Electrifying transportation seems like magic because the core machine is so much better at turning energy into motion.
A typical electric drivetrain is about three times as efficient as a gasoline one, and it runs on a fuel that can steadily move toward being 100% renewable and carbon-free.
EVs bring other benefits too, like quiet streets and low maintenance, but the headline is simple. Its superpower is efficiency. We are talking about roughly 0.27 kWh per mile for a mid-size EV, equivalent to about 125 MPG.
That gap alone is enough to deeply cut emissions as the grid cleans up. Yet there is another side to efficiency that most people miss.
The way most of us travel day to day is overbuilt for the job. One person, often alone, moving at low average speeds through city streets in a 3,000 to 5,000+ lb vehicle.
Most of the energy goes to pushing a heavy machine and a lot of air, not to moving a human body. On a typical urban trip, about 95% of the energy moves the vehicle, and only about 5% moves the person.
That is not a moral judgment. It is physics.
When you repeatedly accelerate two tons in stop-and-go traffic, you spend energy on mass. When you cruise with a large frontal area, you spend energy on drag. Either way, the human is the smallest part of the payload.
The battery-electric revolution opens the door to right-sized electric mobility that flips this ratio. Electric motors scale beautifully. They are compact, efficient, and happy at many sizes.
That is why we now have an entire family of vehicles that can deliver a full trip at a fraction of the energy. Think e-scooters, e-bikes and cargo bikes, mopeds, compact city EVs, and neighborhood electric vehicles. The savings are not subtle.
A typical e-bike uses about 10 to 20 Wh per mile. At the U.S. average residential electricity price, that is well under one cent per mile. A small neighborhood EV might use 80 to 150 Wh per mile, still many times less than a full-size car.
Compare that with a gasoline sedan at around 1,100 Wh per mile worth of fuel energy, or even a mid-size EV at about 250 to 300 Wh per mile, and the order-of-magnitude difference becomes clear.
Right-sizing brings other gains. Smaller electric vehicles need smaller batteries, which lowers cost and materials demand. They can charge from an ordinary outlet overnight. Parking gets easier. Streets get calmer. Air gets cleaner where people live.
These are resilience benefits as well. A household with a mix of light electric options can keep moving even during fuel disruptions, and a car with a modest battery can backstop outages at home with vehicle-to-load gear. Cities that shift short trips to light electric modes need less space and less money to move more people.
None of this argues against the mainstream EV. For many trips, a conventional car is the right tool, and replacing a gasoline car with an electric one cuts energy use by a factor of three or four before you account for the grid’s ongoing shift to renewables. It is simply that our efficiency story is incomplete if it stops at the car-for-car swap. The lowest-cost, lowest-carbon, and most space-efficient miles will often be ridden, not driven.
The good news is we are already living in this future. Most urban trips are short enough for light electric mobility. In the United States, roughly half of all trips are under three miles. That is e-bike territory for many people and many days, with weather gear and cargo options making it practical for more. Cities that add safe networks for small vehicles see rapid uptake, because the product is compelling. It is fun, fast enough, cheap to run, and simple to maintain.
If you want a simple mental model, use this. Electrification gives you a big step up in efficiency at any vehicle size. Downsizing gives you another. Stack them and you get both deep decarbonization and better daily life. We can triple drivetrain efficiency by moving from internal combustion to electric. We can multiply total-system efficiency again by choosing the smallest electric that does the job. The result is cleaner air, lower costs, quieter streets, and far less energy burned to move the same person from A to B.
So by all means celebrate the conventional electric car. It is a workhorse and a crucial climate tool. Then look at the rest of the electric toolbox and pick the right size for the job. The fastest way to win on energy and money is to electrify, and then right-size.