Categories
Uncategorized

Key climate solutions for communities

To unlock new climate progress, apply the power of local communities. Communities are key to most of the climate action needed as well as types of action that can make daily life safer, healthier, and more affordable for everyone.

What follows is a list of community‑oriented solutions that:

  • Are key areas of climate action overall;
  • Offer some of the most effective climate opportunities for communities;
  • Fall within local authority and influence, representing unique power by communities; and
  • Advance equity and public wellbeing, which can lead the way to support for doing more.

Estimates reflect typical North American urban conditions and results vary by context.

#1. Make it legal and attractive to put housing near destinations, and amenities near homes: Reform zoning for more homes in job‑ and transit‑rich areas, permit “missing middle” housing and accessory units, reduce minimum parking, enable small mixed‑use corner stores, clinics, and childcare, and streamline approvals for affordability and inclusion. 

Infill homes lower household VMT 20–40% versus sprawl; shifting 10–20% of growth to infill can cut regional on‑road emissions ~2–6% over a decade, while multifamily/attached homes use 10–30% less energy per unit. If 40%+ of new housing is transit‑oriented, metro transport emissions can fall 10–20% by 2040, with shorter trips, lower costs, and inclusionary policies reducing displacement pressures.

#2. Neutralize the threat of being killed or seriously injured by a driver: Design streets to self‑enforce safe speeds, build connected, protected bike networks, daylight intersections, prioritize pedestrians at crossings, and target high‑injury corridors with data‑driven design, paired with fair enforcement and universal access to safe mobility. 

Such programs typically cut VMT 3–10% citywide within 5–10 years (about 2–8% on‑road CO2e, or 1–4% of total community emissions), with sustained mode shift reducing per‑capita transport emissions 20–50% over 10–20 years. Fewer severe crashes, reliable low‑cost mobility during fuel price spikes or outages, and better access to jobs and services especially benefit low‑income residents, youth, seniors, and people with disabilities.

#3. Deliver high‑quality walking, bicycling, and public transit for everyone: Build safe, direct bike routes and frequent, reliable transit with all‑door boarding, bus lanes, and integrated fares, and complete trips with wayfinding, lighting, benches, shade, and safe crossings. Network upgrades and service improvements reduce corridor VMT 5–15% and citywide 3–10%, and over time enable car‑light lifestyles that can halve household transport emissions. Redundant, multimodal networks also keep people moving during storms and outages while cutting mobility costs and improving access to essentials.

#4. Create abundant places to meet, interact, and belong outside of commerce: Invest in parks, plazas, libraries, greenways, and car‑free streets with free programming, designed for comfort—trees, water, seating, restrooms—and cultural expression. 

Nearby amenities reduce short car trips (often 0.5–2% VMT citywide) and shaded, tree‑rich public spaces lower cooling demand for adjacent buildings. Social infrastructure strengthens mutual aid, and shade and cooling reduce heat risk while free programming expands wellbeing without raising household costs.

#5. Restore and steward nature in the city with climate‑resilient landscaping and urban forestry:  Install bioswales, rain gardens, permeable pavements, and green roofs; landscape with native, drought‑tolerant species; expand and equitably distribute tree canopy; and restore wetlands, riparian corridors, dunes, and living shorelines. 

Shade and evapotranspiration cut cooling loads 5–30% for shaded buildings (roughly 0.05–0.3 tCO2e per home per year), while each new street tree sequesters 10–25 kg CO2 annually; 100,000 trees store 1–2.5 ktCO2e per year and avoid more via energy savings. Citywide canopy gains of 10 percentage points can reduce peak electricity demand 2–5%, while bioswales and rain gardens reduce flooding and heat in historically underserved neighborhoods.

#6. Grow local, plant‑rich food for health, climate, and resilience: Support community gardens, urban farms, edible landscaping, school gardens, greenhouses and rooftop farms; expand farmers markets and CSAs with SNAP matching; prioritize culturally appropriate crops and cut food waste. 

Plant‑rich diets reduce 0.5–1.6 tCO2e per person per year, while shorter cold chains for local produce trim 10–50 kg per person annually and compost‑amended soils store additional carbon. These measures increase food security, lower food bills, build community cohesion, and create local jobs and skills.

#7. Turn waste into soil with municipal composting: Provide universal organics collection (including multifamily) and business service, convenient drop‑offs, clear bin standards, and edible food recovery, and apply finished compost in parks, street trees, and urban agriculture. 

Diverting 1 t of food scraps from landfill avoids 0.2–0.6 tCO2e; with 75% diversion, communities avoid 20–80 kg CO2e per person annually, and compost use adds soil carbon and displaces synthetic fertilizer, totaling 40–120 kg per person per year. Programs create local jobs, improve soils that retain water, support urban food, and reduce odors and pests near facilities often sited in low‑income areas.

#8. Create systems for water conservation and efficiency: Offer instant‑rebate upgrades for high‑efficiency fixtures and appliances, smart irrigation, and turf replacement with climate‑appropriate landscaping; deploy smart meters with leak alerts; promote rainwater harvesting and safe graywater reuse; and set fair, affordability‑protected rates. 

Hot‑water efficiency (fixtures plus heat‑pump water heaters) lowers 0.6–1.8 tCO2e per home per year, while outdoor water efficiency and smart irrigation save 50–200 kg per home via the water‑energy nexus; utility‑scale leak detection and efficiency can cut water‑system electricity use 10–30%. The result is lower bills, improved drought resilience, reduced shutoff risk, and cooler neighborhoods where turf gives way to drought‑tolerant landscapes.

#9. Make buildings efficient and electric: Require and finance tight envelopes, passive cooling (shade, ventilation), and all‑electric systems; add rooftop solar and vehicle‑to‑home readiness; and harden for heat, smoke, fires, and floods. 

Typical retrofits and heat pumps save 1–3 tCO2e per home per year, heat‑pump water heaters 0.5–1.5 t, and induction 0.1–0.3 t; retrofitting 2–3% of stock annually cuts building emissions 3–7% in five years, and with grid decarbonization achieves 60–90% cuts by 2040–2050. Efficient envelopes keep homes habitable during outages, indoor air is healthier without combustion, and targeted no‑cost programs reduce energy poverty.

#10. Make electrification available for virtually everything—and beneficial to users: Provide simple, up‑front rebates for heat pumps, induction, electric water heaters, cars, e‑bikes, and chargers; implement equitable rates, managed charging, and community solar; and invest in workforce training and local contractors. 

Accelerated adoption increases cumulative 2030 reductions 10–30% versus slow rollout; each e‑bike that replaces car trips avoids ~0.3–1 tCO2e per year, and each home fuel‑switch avoids 1–3 tCO2e annually. Lower operating costs and cleaner air accrue broadly when access programs ensure renters and low‑income households benefit first.

#11. Build shared, neighborhood‑scale clean energy and resilience: Create resilience centers with solar, batteries, clean‑air rooms, and cooling/warming, link buildings via microgrids, deploy district geothermal/geoexchange networks, organize block commitments to decommission gas laterals and upgrade electrical capacity, and add curbside and hub EV charging. 

District geothermal cuts heating/cooling energy 30–60% and GHGs 40–80% today; microgrids with solar+storage reduce feeder peaks and displace diesel backup (1–3% local electricity emissions), and coordinated gas retirement plus electrification can eliminate 10–20% of total city emissions from building combustion and leakage over two decades. Shared systems keep critical services powered, lower costs for renters and small businesses, and should be prioritized in frontline neighborhoods.

#12. Keep people collectively safe from disasters, shocks, and stressors: Combine nature‑based defenses (trees, wetlands, dunes) with modern standards (cool roofs, updated codes, elevation, floodable parks), add resilient hubs, cooling centers, and clear risk communication, and plan jointly for heat, smoke, floods, and outages. 

These measures safeguard crucial clean energy and other assets that reduce emissions, contribute to a faster adoption of such systems and reduce the likelihood of maladaptations such as increased use of diesel generators, and prevent high‑emission disaster recovery and support reliable operation of clean energy systems. Clean air and cooling access, language‑inclusive alerts, and social infrastructure protect those most exposed.

#13. Tamp down air pollution across its many sources. Tackle tailpipes and smokestacks together with land use, travel‑demand fixes, and clean technology: legalize compact, mixed‑use infill near jobs and transit and pair it with transportation demand management (congestion and curb pricing, employer commute benefits, school travel plans, demand‑based parking, delivery consolidation) to shorten trips, cut VMT and idling, and curb non‑exhaust PM. Accelerate zero‑emission cars, buses, and trucks; electrify buildings; restrict the dirtiest vehicles in dense areas; and expand urban forests and cool corridors. Focus on ports, freight corridors, and overburdened neighborhoods with shore power, yard‑equipment electrification, clean‑truck rules, and fenceline monitoring. Drive down PM2.5 (including diesel black carbon and brake/tire/road dust), PM10, NOx, SO2, VOCs and air toxics (e.g., benzene, formaldehyde, 1,3‑butadiene), carbon monoxide, and methane leaks that fuel ozone—verified with continuous monitoring and transparent public reporting.

Greenhouse‑gas benefits start with light‑duty vehicles: citywide VMT reduction of 3–10% from compact development and TDM typically yields ~2–8% on‑road CO2e cuts in 5–10 years; sustained mode shift to walking, biking, and transit can lower per‑capita transport emissions 20–50% over 10–20 years; and rapid LDV electrification adds 60–90% per‑mile CO2e reductions as grids decarbonize, with each e‑bike that replaces car trips avoiding ~0.3–1 tCO2e per year. Building electrification removes on‑site combustion; each e‑bus avoids ~50–80 tCO2e annually; and medium/heavy‑duty truck electrification cuts 60–95% per‑mile CO2e, while area‑focused clean‑air zones deliver additional, localized multi‑percent transport‑sector cuts. Health gains are largest for residents near ports, warehouses, and arterials, and fewer combustion appliances indoors reduce asthma triggers.

#14. Invest in public infrastructure efficiently and price disproportionate impacts fairly: Use lifecycle cost and carbon accounting, standardized designs, open data, and fair user fees such as weight‑ and distance‑based road charges, curb and congestion pricing, demand‑based parking, and stormwater fees tied to impervious areas, all with protections for low‑income users. 

Congestion and curb pricing reduce VMT 10–20% in priced zones and 2–5% citywide, demand‑based parking trims 2–4%, and stable revenue enables sustained transit and active‑mode expansion that underpins 10–20% transport‑sector cuts over time. Pairing pricing with income‑based discounts and reinvestment delivers fairer outcomes and lowers long‑run costs.

#15. Save money and materials with sharing and lending: Launch tool, toy, sports‑gear, and baby‑gear libraries; repair cafes and fix‑it clinics; clothing swaps and reuse marketplaces; and shared equipment for schools and small businesses, in partnership with public libraries for memberships and reservations. 

Avoided production dominates the climate benefit—sharing a handful of seldom‑used items can avert 50–200 kg CO2e per person per year, with mature programs achieving 0.1–1% community‑wide cuts and broader normalization of reuse delivering 2–5% consumption‑based reductions by 2035. These programs provide low‑cost access to essentials and skills and build social networks that matter in emergencies.

#16. Offer local services and experiences as affordable alternatives to high consumption:  Invest in arts and culture passes, maker spaces, community kitchens, skill‑shares, recreation, local tourism, and nature access, and support small businesses that provide repair, care, wellness, and learning, using vouchers and memberships to ensure inclusion. 

Shifting 5% of household spend from goods to low‑carbon services and experiences reduces ~0.2–0.8 tCO2e per household per year, with scaled programs cutting community consumption‑based emissions 1–3% over time. The result is more wellbeing per dollar, local jobs and skills, and inclusive access to community life.

#17. Organize public decision‑making around measurable collective wellbeing: 

Use participatory budgeting, citizens’ assemblies, language access, evidence‑based pilots and A/B tests, transparent dashboards, and delivery‑focused timelines that give frontline communities real power, not just voice. 

Faster, smarter adoption increases cumulative reductions—programs that double deployment rates can boost 2030 impact 10–30% versus business‑as‑usual rollout—while policies reflecting lived experience deliver fairer, more durable outcomes.

#18. Make large‑scale change possible and practical: Build project pipelines and pattern books, pre‑approve typical designs, procure at scale, train a climate‑ready workforce, and start with quick‑build projects that become permanent as data show benefits.

Standardization and bulk buys lower costs and speed deployment across sectors, compounding reductions, while predictable pipelines create local careers and let small and minority‑owned firms compete and thrive.

Putting it all together

Communities that pursue these strategies in parallel can plausibly cut total emissions 35–60% by 2035 (from a 2020s baseline) while reducing heat and flood risk, improving air quality, lowering household bills, and creating good local jobs. The fastest paths pair demand reduction (land use, mobility, efficiency), rapid electrification, neighborhood‑scale clean energy, water and materials stewardship, and joyful, lower‑consumption ways of living—implemented through equitable programs that prioritize those with the greatest energy and health burdens.

Leave a comment