Categories
Uncategorized

Wrap-up of COP30 in Belém: Developments and what’s next

The COP30 climate talks in Belém, Brazil closed with a familiar mixed message: the headline cover decision reaffirmed the 1.5°C limit and called for “transitions” in energy and economies, but stopped short of a clear, time‑bound fossil‑fuel phaseout and left finance and carbon‑market rules largely unresolved.

That gap between ambition and delivery is where the action now moves—to 2035 nationally-determined commitments (NDCs), to sector transitions guided by the IPCC, to health and wellbeing co‑benefits, and to cities, states, and service innovators who can make climate progress tangible.

Alignment with the IPCC’s “major transitions”

IPCC AR6 lays out the big shifts needed this decade. Power must decarbonize and end use must electrify. Industry needs efficiency and fuel switching. Transport and buildings require strong demand side changes. Land food and nature based solutions must expand. Finance and governance reforms must enable these changes in ways that are feasible and just.

On energy and fossil fuels, the cover decision invoked transitions and allowed for abatement and CCS, but it did not codify a universal fossil fuel phaseout. It reiterated scaling clean energy and efficiency consistent with IPCC least cost pathways, yet without stronger time bound collective targets. The net effect is a political signal to keep shifting capital while continued ambiguity risks a slower drawdown of coal oil and gas.

On 2035 NDCs, parties were urged to submit new economy wide targets aligned with 1.5°C. This matters because it sets a near term deadline for whole economy planning and, if done well, can drive integrated transitions across power transport buildings and industry rather than a set of siloed pledges.

On adaptation and resilience, negotiators advanced work on operationalizing the Global Goal on Adaptation with more clarity on indicators and reporting and less on quantified global targets. This helps countries design risk informed and locally appropriate transitions that remain robust under uncertainty.

On finance and feasibility, delivery pathways for climate finance still lag needs. Without clearer concessional flows and debt relief the feasibility dimension that combines institutions finance and capacity remains a bottleneck for many economies.

On process innovation, the Brazil Presidency draft Mutirão text was described in mid-COP briefings as a menu-based push on implementation. This signals a pivot from one-size-fits-all to practical options that countries can pick up. If carried into the 2035 NDC cycle, it could accelerate uptake of proven transition packages.

The bottom line on transitions is that COP30 nudged system wide planning with 2035 NDCs and adaptation metrics, but it left the core mitigation signal weaker than the IPCC call for rapid deep and sustained reductions. Delivery now hinges on national policy packages and real economy coalitions that move power transport buildings industry and land together.

Role of affordability, health, and other wellbeing

A notable advance at COP30 was the prominence of health and quality of life framing. The WHO Special Report Delivering the Belém Health Action Plan lays out a practical agenda to integrate health into climate action through climate resilient and low carbon health systems, cleaner air, heat health protection, and finance models that value health benefits.

In practice, more parties and partners signaled plans to embed health metrics in climate policy. They plan to track avoided deaths from cleaner air, reduced heat risk, and the resilience of clinics. This reframes climate policy as a public health dividend and not only an emissions ledger.

Demand-side measures for affordability and comfort gained attention. Efficient all-electric homes, passive and district cooling, and clean cooking can reduce bills, improve indoor air, and deliver thermal comfort, especially for low-income households.

Time saved and access also featured. Mobility investments that emphasize high frequency transit, safe walking and cycling, and integrated ticketing reduce commute times and improve access to jobs and services. These multiple benefits are often undervalued in cost benefit analysis.

This matters because policies that foreground lower energy poverty, better air, safer heat seasons, and shorter commutes tend to be more durable politically and faster to scale.

The Belém Health Action Plan offers a template that ministries can adopt now, with indicators that resonate beyond climate circles.

Subnational developments

The Presidency spotlighted cities, regions, tribal, and Indigenous governments as delivery agents. An official evening summary on November 11 emphasized how local and subnational leadership is driving real world climate progress in peoples homes.

Cities and states showcased local implementation plans that braid climate health and affordability goals. Examples include building performance standards, all electric codes for new buildings, rental retrofit programs, and cooling action plans.

They advanced fleet and infrastructure pivots such as zero emission buses, municipal fleets, freight corridors, and EV ready streetscapes, paired with reliability upgrades to distribution grids.

Nature and resilience programs featured urban tree canopies, blue green stormwater systems, fire smart land use, and nature based coastal buffers as no regrets moves that also improve daily life.

Finance innovation is helping smaller jurisdictions attract private capital while protecting low income households by packaging projects into standardized programs such as pay as you save retrofits, green mortgages, and resilience bonds.

This matters because subnational governments control many levers that shape user experience including permits codes service standards transit frequency and cooling centers. Their plans can translate COP speak into renovations routes and shade on the ground.

Focus on services to unite policy with user experience and value

One evolution at COP30 is the treatment of climate solutions as services and not only technologies. The focus is on meeting needs such as mobility, thermal comfort, cooling, clean cooking, and reliable power through integrated offers that align incentives from the start.

A services lens accelerates climate action in several ways. Clear value propositions help because people buy outcomes rather than kilowatt hours, for example mobility as a service that delivers fast reliable and safe trips, comfort as a service that delivers quiet healthy and stable indoor temperatures, and cooling as a service that guarantees performance without upfront cost.

Policy fit improves when service performance standards such as comfort hours trip times and air quality targets sit alongside emissions standards.

Public procurement can buy services for example contracted comfort for schools and hospitals instead of equipment, which enables aggregators to finance upgrades at scale.

Ownership of the user experience reduces friction when one accountable entity handles design delivery maintenance and billing, with bundles that include financing warranties and simple apps that make clean choices the easy default.

Equity by design becomes practical because services can embed affordability through lifeline tiers on bill tariffs and targeted subsidies that guarantee comfort and access for renters and low income households who are often locked out of capital intensive technology.

Data and verification also improve because service contracts create measurable outcomes such as comfort hours avoided outages and on time trips which can anchor results based finance and where appropriate high integrity carbon and health crediting.

Near‑term service plays to watch:

  • Thermal comfort services for social housing and schools, combining envelope, heat pumps, and ventilation with pay‑as‑you‑save tariffs.
  • Cooling‑as‑a‑service in hot cities, linked to heat‑health plans and time‑of‑use pricing.
  • Clean‑cooking service subscriptions that bundle stoves, fuel access, and maintenance.
  • Mobility subscriptions that integrate transit, bike/scooter share, and first/last‑mile shuttles.
  • Reliability‑as‑a‑service for critical facilities, pairing rooftop solar, storage, and microgrids under performance contracts.

Wrap-up

So, did COP30 move the needle? The signal is moderate because the cover text uses transitions language that keeps 1.5°C on the agenda but it avoided a clear fossil phaseout.

The structure is useful since 2035 NDC guidance, adaptation metrics work, and the Brazil Presidency’s menu style implementation push give countries and cities a clearer runway to act.

The substance is still to be delivered, and the most credible progress now lies in national policy packages, subnational implementation, and service based business models that foreground health, affordability, comfort, and time.

Looking ahead, watch for the first wave of 2035 NDCs and whether they are economy-wide, IPCC-aligned, and grounded in just locally led transitions.

Track how quickly countries operationalize the Belém Health Action Plan in budgets, clinics, heat health systems, and clean air rules.

See whether cities and states move building retrofits, cooling programs, and transit upgrades from pilots to standardized and financeable portfolios.

Monitor whether ministries, school districts, and utilities begin procuring outcomes such as comfort, reliability, and trips at scale.

References

UNFCCC (22 Nov 2025). Outcomes Report of the Global Climate Action Agenda at COP 30. UNFCCC. https://unfccc.int/documents/655037

COP30 Presidency (15 Nov 2025). COP30 Evening Summary – November 15. COP30 Presidency. https://cop30.br/en/news-about-cop30/cop30-evening-summary-november-15

European Parliament (17 Nov 2025). COP30 outcome: slow progress, but insufficient to meet the climate crisis urgency. European Parliament. https://www.europarl.europa.eu/news/fr/press-room/20251117IPR31438/cop30-outcome-slow-progress-but-insufficient-to-meet-climate-crisis-urgency

Categories
Uncategorized

Key climate solutions for communities

To unlock new climate progress, apply the power of local communities. Communities are key to most of the climate action needed as well as types of action that can make daily life safer, healthier, and more affordable for everyone.

What follows is a list of community‑oriented solutions that:

  • Are key areas of climate action overall;
  • Offer some of the most effective climate opportunities for communities;
  • Fall within local authority and influence, representing unique power by communities; and
  • Advance equity and public wellbeing, which can lead the way to support for doing more.

Estimates reflect typical North American urban conditions and results vary by context.

#1. Make it legal and attractive to put housing near destinations, and amenities near homes: Reform zoning for more homes in job‑ and transit‑rich areas, permit “missing middle” housing and accessory units, reduce minimum parking, enable small mixed‑use corner stores, clinics, and childcare, and streamline approvals for affordability and inclusion. 

Infill homes lower household VMT 20–40% versus sprawl; shifting 10–20% of growth to infill can cut regional on‑road emissions ~2–6% over a decade, while multifamily/attached homes use 10–30% less energy per unit. If 40%+ of new housing is transit‑oriented, metro transport emissions can fall 10–20% by 2040, with shorter trips, lower costs, and inclusionary policies reducing displacement pressures.

#2. Neutralize the threat of being killed or seriously injured by a driver: Design streets to self‑enforce safe speeds, build connected, protected bike networks, daylight intersections, prioritize pedestrians at crossings, and target high‑injury corridors with data‑driven design, paired with fair enforcement and universal access to safe mobility. 

Such programs typically cut VMT 3–10% citywide within 5–10 years (about 2–8% on‑road CO2e, or 1–4% of total community emissions), with sustained mode shift reducing per‑capita transport emissions 20–50% over 10–20 years. Fewer severe crashes, reliable low‑cost mobility during fuel price spikes or outages, and better access to jobs and services especially benefit low‑income residents, youth, seniors, and people with disabilities.

#3. Deliver high‑quality walking, bicycling, and public transit for everyone: Build safe, direct bike routes and frequent, reliable transit with all‑door boarding, bus lanes, and integrated fares, and complete trips with wayfinding, lighting, benches, shade, and safe crossings. Network upgrades and service improvements reduce corridor VMT 5–15% and citywide 3–10%, and over time enable car‑light lifestyles that can halve household transport emissions. Redundant, multimodal networks also keep people moving during storms and outages while cutting mobility costs and improving access to essentials.

#4. Create abundant places to meet, interact, and belong outside of commerce: Invest in parks, plazas, libraries, greenways, and car‑free streets with free programming, designed for comfort—trees, water, seating, restrooms—and cultural expression. 

Nearby amenities reduce short car trips (often 0.5–2% VMT citywide) and shaded, tree‑rich public spaces lower cooling demand for adjacent buildings. Social infrastructure strengthens mutual aid, and shade and cooling reduce heat risk while free programming expands wellbeing without raising household costs.

#5. Restore and steward nature in the city with climate‑resilient landscaping and urban forestry:  Install bioswales, rain gardens, permeable pavements, and green roofs; landscape with native, drought‑tolerant species; expand and equitably distribute tree canopy; and restore wetlands, riparian corridors, dunes, and living shorelines. 

Shade and evapotranspiration cut cooling loads 5–30% for shaded buildings (roughly 0.05–0.3 tCO2e per home per year), while each new street tree sequesters 10–25 kg CO2 annually; 100,000 trees store 1–2.5 ktCO2e per year and avoid more via energy savings. Citywide canopy gains of 10 percentage points can reduce peak electricity demand 2–5%, while bioswales and rain gardens reduce flooding and heat in historically underserved neighborhoods.

#6. Grow local, plant‑rich food for health, climate, and resilience: Support community gardens, urban farms, edible landscaping, school gardens, greenhouses and rooftop farms; expand farmers markets and CSAs with SNAP matching; prioritize culturally appropriate crops and cut food waste. 

Plant‑rich diets reduce 0.5–1.6 tCO2e per person per year, while shorter cold chains for local produce trim 10–50 kg per person annually and compost‑amended soils store additional carbon. These measures increase food security, lower food bills, build community cohesion, and create local jobs and skills.

#7. Turn waste into soil with municipal composting: Provide universal organics collection (including multifamily) and business service, convenient drop‑offs, clear bin standards, and edible food recovery, and apply finished compost in parks, street trees, and urban agriculture. 

Diverting 1 t of food scraps from landfill avoids 0.2–0.6 tCO2e; with 75% diversion, communities avoid 20–80 kg CO2e per person annually, and compost use adds soil carbon and displaces synthetic fertilizer, totaling 40–120 kg per person per year. Programs create local jobs, improve soils that retain water, support urban food, and reduce odors and pests near facilities often sited in low‑income areas.

#8. Create systems for water conservation and efficiency: Offer instant‑rebate upgrades for high‑efficiency fixtures and appliances, smart irrigation, and turf replacement with climate‑appropriate landscaping; deploy smart meters with leak alerts; promote rainwater harvesting and safe graywater reuse; and set fair, affordability‑protected rates. 

Hot‑water efficiency (fixtures plus heat‑pump water heaters) lowers 0.6–1.8 tCO2e per home per year, while outdoor water efficiency and smart irrigation save 50–200 kg per home via the water‑energy nexus; utility‑scale leak detection and efficiency can cut water‑system electricity use 10–30%. The result is lower bills, improved drought resilience, reduced shutoff risk, and cooler neighborhoods where turf gives way to drought‑tolerant landscapes.

#9. Make buildings efficient and electric: Require and finance tight envelopes, passive cooling (shade, ventilation), and all‑electric systems; add rooftop solar and vehicle‑to‑home readiness; and harden for heat, smoke, fires, and floods. 

Typical retrofits and heat pumps save 1–3 tCO2e per home per year, heat‑pump water heaters 0.5–1.5 t, and induction 0.1–0.3 t; retrofitting 2–3% of stock annually cuts building emissions 3–7% in five years, and with grid decarbonization achieves 60–90% cuts by 2040–2050. Efficient envelopes keep homes habitable during outages, indoor air is healthier without combustion, and targeted no‑cost programs reduce energy poverty.

#10. Make electrification available for virtually everything—and beneficial to users: Provide simple, up‑front rebates for heat pumps, induction, electric water heaters, cars, e‑bikes, and chargers; implement equitable rates, managed charging, and community solar; and invest in workforce training and local contractors. 

Accelerated adoption increases cumulative 2030 reductions 10–30% versus slow rollout; each e‑bike that replaces car trips avoids ~0.3–1 tCO2e per year, and each home fuel‑switch avoids 1–3 tCO2e annually. Lower operating costs and cleaner air accrue broadly when access programs ensure renters and low‑income households benefit first.

#11. Build shared, neighborhood‑scale clean energy and resilience: Create resilience centers with solar, batteries, clean‑air rooms, and cooling/warming, link buildings via microgrids, deploy district geothermal/geoexchange networks, organize block commitments to decommission gas laterals and upgrade electrical capacity, and add curbside and hub EV charging. 

District geothermal cuts heating/cooling energy 30–60% and GHGs 40–80% today; microgrids with solar+storage reduce feeder peaks and displace diesel backup (1–3% local electricity emissions), and coordinated gas retirement plus electrification can eliminate 10–20% of total city emissions from building combustion and leakage over two decades. Shared systems keep critical services powered, lower costs for renters and small businesses, and should be prioritized in frontline neighborhoods.

#12. Keep people collectively safe from disasters, shocks, and stressors: Combine nature‑based defenses (trees, wetlands, dunes) with modern standards (cool roofs, updated codes, elevation, floodable parks), add resilient hubs, cooling centers, and clear risk communication, and plan jointly for heat, smoke, floods, and outages. 

These measures safeguard crucial clean energy and other assets that reduce emissions, contribute to a faster adoption of such systems and reduce the likelihood of maladaptations such as increased use of diesel generators, and prevent high‑emission disaster recovery and support reliable operation of clean energy systems. Clean air and cooling access, language‑inclusive alerts, and social infrastructure protect those most exposed.

#13. Tamp down air pollution across its many sources. Tackle tailpipes and smokestacks together with land use, travel‑demand fixes, and clean technology: legalize compact, mixed‑use infill near jobs and transit and pair it with transportation demand management (congestion and curb pricing, employer commute benefits, school travel plans, demand‑based parking, delivery consolidation) to shorten trips, cut VMT and idling, and curb non‑exhaust PM. Accelerate zero‑emission cars, buses, and trucks; electrify buildings; restrict the dirtiest vehicles in dense areas; and expand urban forests and cool corridors. Focus on ports, freight corridors, and overburdened neighborhoods with shore power, yard‑equipment electrification, clean‑truck rules, and fenceline monitoring. Drive down PM2.5 (including diesel black carbon and brake/tire/road dust), PM10, NOx, SO2, VOCs and air toxics (e.g., benzene, formaldehyde, 1,3‑butadiene), carbon monoxide, and methane leaks that fuel ozone—verified with continuous monitoring and transparent public reporting.

Greenhouse‑gas benefits start with light‑duty vehicles: citywide VMT reduction of 3–10% from compact development and TDM typically yields ~2–8% on‑road CO2e cuts in 5–10 years; sustained mode shift to walking, biking, and transit can lower per‑capita transport emissions 20–50% over 10–20 years; and rapid LDV electrification adds 60–90% per‑mile CO2e reductions as grids decarbonize, with each e‑bike that replaces car trips avoiding ~0.3–1 tCO2e per year. Building electrification removes on‑site combustion; each e‑bus avoids ~50–80 tCO2e annually; and medium/heavy‑duty truck electrification cuts 60–95% per‑mile CO2e, while area‑focused clean‑air zones deliver additional, localized multi‑percent transport‑sector cuts. Health gains are largest for residents near ports, warehouses, and arterials, and fewer combustion appliances indoors reduce asthma triggers.

#14. Invest in public infrastructure efficiently and price disproportionate impacts fairly: Use lifecycle cost and carbon accounting, standardized designs, open data, and fair user fees such as weight‑ and distance‑based road charges, curb and congestion pricing, demand‑based parking, and stormwater fees tied to impervious areas, all with protections for low‑income users. 

Congestion and curb pricing reduce VMT 10–20% in priced zones and 2–5% citywide, demand‑based parking trims 2–4%, and stable revenue enables sustained transit and active‑mode expansion that underpins 10–20% transport‑sector cuts over time. Pairing pricing with income‑based discounts and reinvestment delivers fairer outcomes and lowers long‑run costs.

#15. Save money and materials with sharing and lending: Launch tool, toy, sports‑gear, and baby‑gear libraries; repair cafes and fix‑it clinics; clothing swaps and reuse marketplaces; and shared equipment for schools and small businesses, in partnership with public libraries for memberships and reservations. 

Avoided production dominates the climate benefit—sharing a handful of seldom‑used items can avert 50–200 kg CO2e per person per year, with mature programs achieving 0.1–1% community‑wide cuts and broader normalization of reuse delivering 2–5% consumption‑based reductions by 2035. These programs provide low‑cost access to essentials and skills and build social networks that matter in emergencies.

#16. Offer local services and experiences as affordable alternatives to high consumption:  Invest in arts and culture passes, maker spaces, community kitchens, skill‑shares, recreation, local tourism, and nature access, and support small businesses that provide repair, care, wellness, and learning, using vouchers and memberships to ensure inclusion. 

Shifting 5% of household spend from goods to low‑carbon services and experiences reduces ~0.2–0.8 tCO2e per household per year, with scaled programs cutting community consumption‑based emissions 1–3% over time. The result is more wellbeing per dollar, local jobs and skills, and inclusive access to community life.

#17. Organize public decision‑making around measurable collective wellbeing: 

Use participatory budgeting, citizens’ assemblies, language access, evidence‑based pilots and A/B tests, transparent dashboards, and delivery‑focused timelines that give frontline communities real power, not just voice. 

Faster, smarter adoption increases cumulative reductions—programs that double deployment rates can boost 2030 impact 10–30% versus business‑as‑usual rollout—while policies reflecting lived experience deliver fairer, more durable outcomes.

#18. Make large‑scale change possible and practical: Build project pipelines and pattern books, pre‑approve typical designs, procure at scale, train a climate‑ready workforce, and start with quick‑build projects that become permanent as data show benefits.

Standardization and bulk buys lower costs and speed deployment across sectors, compounding reductions, while predictable pipelines create local careers and let small and minority‑owned firms compete and thrive.

Putting it all together

Communities that pursue these strategies in parallel can plausibly cut total emissions 35–60% by 2035 (from a 2020s baseline) while reducing heat and flood risk, improving air quality, lowering household bills, and creating good local jobs. The fastest paths pair demand reduction (land use, mobility, efficiency), rapid electrification, neighborhood‑scale clean energy, water and materials stewardship, and joyful, lower‑consumption ways of living—implemented through equitable programs that prioritize those with the greatest energy and health burdens.

Categories
Uncategorized

To electrify transportation faster, look beyond vehicles to urbanism—and electrify that

To electrify transportation, we have to swap gas cars for battery-powered ones.

Just as important is the system they run on: The location of origins and destinations. How the roads and parking work. The relative status among the different modes–including the emerging classes of hyper-efficient micromobility vehicles. What is a normal way to get something a quarter mile a way. To move across town.

Compact development multiplies electrification’s possibilities

In a more compact community, each charger, bus depot, and e-bike corral serves more trips. Such locational efficiency translates to higher utilization which lowers cost per electrified trip and accelerates payback on infrastructure. That increases returns on investment.

Shorter, more frequent trips better enable micromobility and transit. Public and workplace charging reach more users, and fleet duty cycles become more predictable. That means more people and trips served.

Dense, connected neighborhoods support an ecosystem of e-bikes, e-cargo bikes, scooters, neighborhood EVs, electric transit, shared fleets, and zero-emission delivery. That spreads benefits and reduces battery and grid needs.

Clustering buildings, parked vehicles, and loads in closer to one another enables managed charging, vehicle-to-grid (V2G) with school and transit buses, building-vehicle coordination, and neighborhood microgrids—boosting flexibility and resilience. That means more opportunities to create fuller ecosystems of electrification in which different uses support one another.

High-ridership, short-route corridors can more cost-effectively match battery duty cycles, simplify depot design, and enable reliable layover or on-route charging. When land use supports frequent service, electric buses reach lower total cost of ownership faster and deliver bigger air-quality gains. That means better transit electrification economics.

Compact form cuts miles driven, trims parking and road costs, and lowers household transportation expenses. Savings from fewer cars and less asphalt can be reinvested in charging, transit, safe streets, and building upgrades. That means savings for household and municaplities.

Denser electrification makes way for tipping points

Full electrification at scale requires existing neighborhoods and districts to to step away existing from natural gas distribution systems in big leaps. Large chunks of existing shared infrastructure needs to be retired in coordinated investments to avoid leaving a minority of ratepayers with stranded assets and impossibly high costs. The process needs a critical mass of subscribers.

Urbanism methods–compact development combined with community-scale planning–can help make transportation electrification investments play a key supportive role. By pairing infill housing and mixed-use development with transit, depot charging, e-mobility hubs, and building heat pumps, districts concentrate flexible electric load.

The payoff: Fully-electrified towns that make use of electric transportation even more.

“Avoiding” travel and “shifting” modes first increases returns

Research shows the most cost-effective way to deliver maximum electrification services for the fewest energy requirements and environmental harm is in the “avoid–shift–improve” framework (ASI).

ASI prescribes avoiding unnecessary demand for a service in the first place; then shifting remaining demand to inherently lower-impact modes, energy carriers, places, or times; and finally, improving the efficiency and cleanliness of technologies and infrastructure that still serve that demand.

Urbanism is fundamental to the first two aspects. The most direct way to “avoid” is compact, complete neighborhoods that reduce trip lengths and vehicle-miles traveled (VMT). And fundamental to”shifting” is safe, reliable transit and protected bike networks that move trips to efficient modes suited to small batteries.

“Avoiding” and “shifting” before “improving” to electrification saves resources by requiring fewer batteries, chargers, and grid upgrades to meet the same mobility needs. It lowers net cost and raises accessibility, since short trips fit low-cost e-bikes and walking and high-utilization charging cuts per-trip costs. And it frees up cash—city capital once aimed at road widening and parking, plus household savings from ditching a second car, can fund more charging, transit, and building electrification.

Urbanism creates new EV opportunities for equity (and durability)

Urbanism provides a way to focus on electrifying the modes that are key to making sure everyone is served—buses, shared fleets, e-bikes, and neighborhood carshare—and where air pollution burdens and cost pressures are highest.

Such a lense can help to elevate electric buses and bus rapid transit in high-ridership corridors with bus-priority lanes; protected bike networks with e-bike purchase, charging, and maintenance support; on-street and multi-family charging in renter-heavy and lower-income neighborhoods; and community ownership models and fare policies that reduce total mobility costs.

This spreads benefits beyond car owners and builds a wider coalition for outcomes that are more likely to be lasting.

Some implications

As the synergies beween urbanism and electrification come to more light, so to does the opportunities for agencies and experts working on them to address the issues together.

Public utility commissions have a stake in VMT. Per-capita VMT reduction and electrified trip share are relevant planning metrics. Encouragement is sensible for utility programs that support location-efficient electrification with make-readies for multi-family housing, depot charging for transit and delivery fleets, managed charging, and V2G. Coordinate electric upgrades with targeted gas decommissioning as districts densify and electrify.

Electric vehicle advocates have a stake in advocating compact development to cities. They can promote zoning reform near jobs and transit, parking reform, complete streets and protected bike lanes, bus lanes, and curb management that prioritizes transit and zero-emission delivery.

Cities and municipal planning organizatons have a stake in targets for electrified trip share and per-capita VMT, not just EV registrations. They can aopt EV-ready and e-bike-ready building codes that require conduit and panel capacity in multi-family and commercial projects; site charging facilities to maxomise utilization at depots, mobility hubs, main streets, and curbside at multi-family buildings; and support e-cargo logistics and consolidation centers to cut van miles.

Transit agencies which seek to electrify high-frequency routes first have a similar stake in supporting greater density as well as protected lanes and other infrastructure to support a better service experience and more riders. More on the technology side, they can align schedules for layover charging, design depots for future V2G revenue and resilience, and pair bus electrification with bus-priority street design to amplify benefits.

Utilities have a stake in buiding an ecosystem that rewards them for expeditiously electrifying everything while providing maximum public benefits. In the near term they can offer fleet and multi-family tariffs with managed charging and capacity subscription options, fund make-readies in disadvantaged communities and at mobility hubs, and deploy more school-bus and transit-bus V2G where feeders are constrained, and coordinate with building electrification to enable gas main retirement.

States and departments of transportation can tie transportation funding to per-capita VMT reduction and electrified trip growth, streamline permitting for curbside and depot charging and for utility upgrades tied to district electrification, and synchronize clean power timelines with transport electrification to maximize emissions cuts.

Employers and developers can site near frequent transit and bikeways, replace parking minimums with mobility benefits, provide e-bike and transit stipends, install shared and open-access charging and secure e-bike parking, and convert last-mile delivery to e-cargo bikes where feasible.

Bottom line

Use urbanism to right-size the transportation challenge—shorter trips, more choices, closer destinations—and electrify mobility and buildings as you build compact, complete neighborhoods. Do that, and the rest of the system—chargers, fleets, and the grid—becomes cheaper to deploy, simpler to operate, and more equitable in its benefits.

Categories
Uncategorized

Urbanism and electrification are key to climate solutions that make life better, and they are friends

Building climate resilience and improving daily life hinge on two powerful, complementary levers: access‑oriented urbanism and clean electrification.

Each delivers lower costs, cleaner air, and greater resilience; together they do more—reducing energy demand, smoothing grid peaks, and keeping essential services running through heat, storms, and outages.

What follows introduces these two pillars, shows how they reinforce one another, and highlights practical, near‑term moves communities, agencies, and firms can take to advance climate action and well‑being at the same time.

Two pillars for climate and well‑being

Urbanism

Urban form sets the floor for energy use and travel. Compact, mixed‑use, transit‑oriented neighborhoods organized around access typically cut per‑capita transport emissions 20–50% and building energy 10–30% versus car‑centric sprawl—while lowering infrastructure and household costs.

Access‑first design puts homes, jobs, schools, groceries, parks, and clinics closer together. Shorter trips unlock walking, biking, and high‑ridership electric transit as the default. They also reduce the electricity needed for mobility even as vehicles electrify.
Safer, cooler streets are health and climate infrastructure: shaded, traffic‑calmed corridors protect walkers and cyclists; protected lanes and safe crossings cut injuries; elevated and flood‑safe segments safeguard transit and emergency access. Trees, cool/permeable surfaces, and greenways can reduce neighborhood heat by about 2–5°F and manage stormwater.

Freight microhubs, e‑cargo bike delivery, and smart curb management reduce double‑parking, congestion, noise, and local air pollution. These strategies improve access while easing energy and space demands.
Gentle density near transit supports affordability, social cohesion, and age‑ and disability‑friendly design. Predictable loads in compact areas make electrification—including district energy and neighborhood‑scale batteries—cheaper and faster.

Electrification

Electrification replaces direct fossil fuel use with power from a grid that is getting cleaner each year. Electricity generation is 25% of US greenhouse gas emissions. Electrification leverages the cleaner grid to cut transportation (28%) and buildings (13% direct; buildings also use 75% of US electricity).

Demand‑side management—efficiency, load flexibility, and smart pricing—shrinks and shifts load so electrification fits the grid. The IPCC estimates demand‑side strategies could cut end‑use emissions 40–70% by 2050. DSM is central to realizing that potential in the US.
In buildings, weatherization and high‑efficiency heat pumps, heat‑pump water heaters, induction cooking, and cool roofs lower bills, reduce heat stress, and cut local pollution. District thermal systems that use heat pumps and waste heat deliver scale benefits in compact areas.

In mobility, EVs, e‑buses, and e‑trucks paired with managed charging soak up midday solar and overnight wind. Vehicle‑to‑building/grid can power shelters, signals, and clinics during outages. Right‑sized, interoperable charging at depots, curbs, and homes makes low‑carbon travel reliable and affordable while reducing refinery and upstream emissions.

Rooftop solar, batteries, and community microgrids keep critical services running during storms, heat waves, and wildfires. Grid hardening and flexible loads improve reliability as extremes intensify.

Cutting waste before adding supply is among the most cost‑effective decarbonization steps because it avoids fuel and grid upgrades. Electrification and efficiency lower utility bills and improve indoor air, with outsized benefits for overburdened communities.

How urbanism and electrification multiply one another

Urbanism enabling electrification

Proximity, smaller homes, and shared walls reduce kWh per capita. Shorter trips cut the electricity required for mobility, lowering costs and grid upgrades.

Concentrated, predictable loads justify district thermal, thermal storage, and neighborhood batteries. Urban greening lowers peak cooling demand citywide.

Parking reform and right‑sized streets free land and budgets for housing, solar canopies, and microgrids. Shift/avoid strategies embedded in urban form reduce the need for new road capacity and lower vehicle manufacturing emissions even as fleets electrify.

Electrification enabling urbanism

All‑electric buildings and vehicles cut street‑level pollution and noise, improving public space and health.

Managed EV and e‑bus charging helps integrate renewables. V2G/V2B fleets and community microgrids keep mobility and essential services running through outages.

Curbside power and interoperable charging support e‑cargo bikes, micromobility, and car share. When paired with smart tariffs, these systems expand access without spiking peaks.

Rich opportunities at the urbanism–electrification seam

Transit‑oriented development plus district energy: Build mid‑rise, mixed‑use neighborhoods around frequent transit and connect buildings to low‑temperature district thermal loops served by heat pumps and waste heat. Result: fewer car trips, lower building loads, and steadier demand that improves grid economics and reliability.

Diversified, electrified mobility beyond car‑only: Create a choice‑rich network—frequent transit, protected bike/scooter lanes, safe crossings, EV car share, integrated fares—with right‑sized depot and curb charging. People can drive less without losing access, cutting energy and emissions and easing grid peaks via managed charging.

Micromobility and low‑speed electric networks: Build continuous, protected lanes and calm streets for e‑bikes, e‑scooters, and neighborhood electric vehicles, with secure, fire‑safe charging or battery‑swap. Hyper‑efficient short trips replace car journeys, trimming demand, emissions, and noise while expanding equitable access.

Comprehensive, high‑quality bike parking where it matters: Provide abundant, secure, 24/7 bike parking and charging at transit stations, schools, workplaces, commercial districts, and housing, with on‑street corrals near destinations. Reliable end‑of‑trip facilities multiply cycling uptake, unlock first/last‑mile access to transit, and relieve curb pressure.

Electrified bus depots with solar, storage, and managed charging: Equip depots with onsite generation, batteries, and smart charging or V2G to power zero‑emission buses and support local feeders. Cleaner, quieter service boosts ridership; flexible capacity integrates renewables and stabilizes the grid.

EV‑ready affordable housing near jobs and transit: Pair deep efficiency, all‑electric heat pumps, rooftop solar, pre‑wired Level 1/2 charging, and secure e‑mobility rooms. Residents get low utility and travel costs and clean air; predictable loads ease grid planning and strengthen resilience.

Complete streets with cool pavements and shade trees: Reallocate space to protected bike lanes, wider sidewalks, and transit priority, and retrofit surfaces with high‑albedo materials and canopy. Safer active travel and cooler microclimates reduce VMT, peak electricity demand, and heat risk.

Mobility hubs powered by microgrids: Co‑locate transit, bike share, e‑scooters, car share, parcel lockers, and charging under solar canopies tied to community microgrids. Riders get seamless low‑carbon trips through outages; cities cut last‑mile emissions and harden critical access.

Smart curb management and freight microhubs: Convert select parking to time‑managed loading zones, e‑cargo bike depots, and lockers with curbside power and digital permits. Faster, cleaner deliveries cut double‑parking, fuel use, and noise while improving safety and air quality.

Heat‑pump retrofits with weatherization and community cooling: Target multifamily buildings for envelope upgrades, efficient heat pumps, cool roofs, and shared resilience rooms with backup power. Lower bills and emissions pair with lifesaving protection during heat waves and outages.

Neighborhood resilience centers with solar and storage: Retrofit libraries, schools, and community centers to provide cooling, clean air, water, device charging, communications, and medical support during outages and heat or smoke events. Tie these hubs to microgrids and V2B/V2G fleets so they serve daily needs and deliver lifesaving services in emergencies.

In short, lead with urbanism and access‑oriented electrification. Together they deliver the bulk of the climate solution set while directly improving reliability, affordability, health, and resilience.

Categories
Uncategorized

Why the “electrify everything” movement needs urbanism

Urbanism, which is the practice of shaping how towns and cities function and evolve, is crucial to the movement to electrify everything.

Here are some reasons:

  1. Urbanism powerfully shapes the critical systems best suited for electrification. Opportunities to electrify transportation and builds largely depend on local ordinances and economic incentives.
  2. Urbanism creates the possibility of scale by unlocking electrification that delivers tangible benefits. Aligning investor motivations with affordability, reliability, and other needs of residents and ratepayers requires those interests to be fully represented in energy legislation and utility regulation. Emphasizing the lens of communities creates a clearer agenda, improves negotiating power, and creates opportunities to consider new alternatives.
  3. Urbanism enables more affordable electrification and new service models. Denser, better-connected places improve the economics of public infrastructure and shared systems, making services easier to deploy and sustain.
  4. Urbanism uniquely enables integrated energy ecosystems. It provides tools and methods to manage the built environment and mobility more fluidly, which is essential for uniting building and transportation energy systems.
  5. Urbanism sets the stage for transformational electrification. The advent of battery‑electric motors has sparked anexplosion of experiments showing how powerful small motors can revolutionize how we move people and goods. Unlocking many of these possibilities depends on urbanism—through rules governing land use, public rights‑of‑way, and building design and use.
  6. Urbanism provides the scale needed to switch from gas to electric systems. A cost‑effective transition to all‑electric homes and buildings is easiest when done at scale—across neighborhoods, districts, or entire towns.
  7. Urbanism shapes how large‑scale electrification systems adapt to environmental shocks and stressors. The viability of major new investments depends on positioning them within broader community resilience strategies.

Electrifying everything is a technology upgrade, but it’s also a project of town-building. The fastest, most durable path runs through urbanism—how we plan land use, streets, buildings, and services. Treating neighborhoods as the unit of change lets us deliver tangible benefits, including lower bills, better air, and reliable service. It also integrates buildings and mobility, and designs for resilience from the start.

The work ahead is practical and local:, it is to align utility and city planning, update codes and incentives, finance district‑scale conversions, invest in the underlying systems for transit and the most efficient forms of e‑mobility, and to center community voices in every decision. Do that, and “electrify everything” becomes more than a slogan—it becomes a lived improvement in how people move, live, and thrive.

Categories
Uncategorized

To use energy resources wisely, first “avoid,” then “shift,” and next, “improve” (ASI)

The avoid–shift–improve (ASI) framework is a conceptual tool to help policymakers and managers deliver maximum services for the fewest energy requirements and environmental harm.

ASI prescribes managing demand first and multiplies the possibilities for electrification.

ASI directs the following:

  • Avoid unnecessary demand for a service in the first place.
  • Shift remaining demand to inherently lower-impact modes, energy carriers, places, or times.
  • Improve the efficiency and cleanliness of technologies and infrastructure that still serve that demand.

ASI was coined for transportation, but it generalizes for energy-using activities more widely.

Transportation: avoid trips and vehicle-kilometers; shift to walking, cycling, transit, rail, coastal shipping; improve vehicles, fuels, operations.

Buildings and cities: avoid loads via passive design/right-sizing; shift to district energy and electrified end-uses and to cleaner times with demand response; improve envelopes, controls, appliances.

Industry and materials: avoid through material efficiency, reuse, and product longevity; shift to recycled feedstocks and electrified or hydrogen-based processes; improve motors, drives, heat integration, high-temp heat pumps.

Power systems: avoid peaks and losses; shift the generation mix to low-carbon sources and demand to low-carbon hours; improve plant and grid efficiency (advanced inverters, reconductoring, storage).

Digital/ICT: avoid unnecessary compute/data movement; shift workloads to low-carbon regions/times; improve chips, cooling, and utilization.

Issues it addresses include climate mitigation, air quality and health, congestion and reliability, resource and land use, energy security, affordability, and resilience.

Who should care

National and local policymakers, planners, and regulators (NDCs, CAPs, land-use/transport codes, building energy codes).
Utilities, ISOs/RTOs, and energy planners (resource adequacy, demand response, electrification).

Corporate leaders across fleet, real estate, operations, procurement, and product design.
Investors and lenders (capex timing, stranded-asset risk, transition plans).

NGOs, researchers, and community groups shaping equitable, demand-side solutions.
Anyone setting climate, cost, or reliability targets who must deliver results this decade.

Where it comes from

Origins: Early 2000s within the sustainable transport community, especially German development cooperation. The approach was codified and popularized through GTZ’s (now GIZ) Sustainable Urban Transport Project (SUTP) and partners.

A widely cited early synthesis is Dalkmann and Brannigan’s GTZ SUTP Module “Transport and Climate Change” (2007). Regional development banks (notably ADB) and networks like SLOCAT then embedded ASI in guidance and programs.

Beyond transport: ASI migrated into buildings, industry, and power as demand-side mitigation rose in prominence (e.g., IPCC AR6).

From modes to moments: “Shift” now includes shifting in time (load flexibility, demand response) as much as shifting modes or carriers.
From three pillars to four: Many practitioners add “Enable” to emphasize institutions, finance, pricing, design standards, and data that make ASI stick.

Integration with circular economy and sufficiency: “Avoid” increasingly overlaps with product longevity, reuse/repair, and service sufficiency.

Equity and co-benefits: Modern ASI practice foregrounds distributional impacts, access, and health, not just carbon metrics.

More rigorous metrics: Better methods to quantify rebound effects, lifecycle emissions, and system interactions help prioritize high-impact measures.

Why it matters—and what goes wrong if you ignore it

Faster, cheaper decarbonization: Avoid and shift measures often deliver near-term, low-cost cuts and reduce the scale of supply-side buildout needed.

Lock-in avoidance: Managing demand and mode/carrier choices now prevents expensive, high-carbon infrastructure lock-in and stranded assets later.

System reliability and resilience: Avoiding peaks and shifting to flexible demand can stabilize grids and networks under stress.

Multiple co-benefits: Clean air, safety, space efficiency, and affordability strengthen public support and create immediate value.

If you ignore ASI, you risk over-relying on “improve” (efficiency/clean tech) alone, which is slower to saturate and vulnerable to rebound effects.

You are likely to overbuild supply and networks, raising costs and exposure to delays, siting constraints, and public opposition.

You miss no-regrets options and equity gains that can make transitions durable.

You may still miss climate targets even with rapid tech deployment, because unmanaged demand and mode choices swamp improvements.

Categories
Uncategorized

Primer on access

In transportation and land use planning, access or accessibility is the ability for people to reach goods, services, and activities.

Another way to define access is people’s ability to meet opportunities, where opportunities are groceries, employment, education, healthcare, and other things they need and value.

A key component of access is mobility, the ability to move through physical space. Mobility is a means to access, but generally not a useful end itself. 

The words “access” and “accessibility” have other uses that are related but different. For example, in the context of people with disabilities, accessibility can refer to equity in mobility. 

Accessibility is also an important part of equity on general. Access in equity can refer to ensuring communities who have suffered and continue to suffer from historical injustices and exclusions now have what they need for well-being, including physical safety, nutrition, health, education, finance, and economic opportunities.

Access is fundamental to climate-resilient development and GHG mitigation.

Measurement

One of the contributions of the concept of access is that it provides a way to quantify the extent to which people can get what they need, and by extension, community health, well-being, and other public outcomes policymakers wish to pursue.

One way to provide access is reachability, or the capacity to physically reach opportunities. Reachability is comprised of the following:

#1. PROXIMITY: Physical distance between origins and destinations. The mix and breath of locations of key opportunities relative to people who need them. Proximity can be measured as the average time to reach one or a basket of key locations by a targeted or wider number of the population.

#2. MOBILITY: Ease or comfort of physical movement along a network. Metrics for mobility are well-established and include average travel speed and auto travel time abstracted from the impact of decisions on other travel modes. Here is a short talk by Jonathan Levine on conventional mobility measures and why they work when properly applied, but also lead us in wrong direction if we try to maximize for them without an organizing goal of accessibility.

#3 FREEDOM FROM BARRIERS: Removal of  impediments to using transport options. This includes affordability, safety, comfort, and other qualities that arise in different settings and with people’s needs. 

Another solution to access is connectivity, which means things coming to you. Connectivity could be for physical goods like water and delivery packages. It could also be digital resources like computing and communications which can (but doesn’t necessarily) provide cost-effective substitutes for physical travel. Connectivity could also be for fire and other emergency services.

In sum, access gives a way to measure meaningful outcomes and internal dynamics in a way that generally is currently lacking in transportation, land use, and related planning.

Practical Use

The idea of access as an integrated transportation and land use strategy brings some advantages. However it is not yet widely used by local governments, a fact that is explained partly by decades of auto-centric decisions in multiple levels of government that has created inertia.

Yet, access as a concept is available for local governments to use—and indeed, offers a way to leadership and innovation that could be valuable.

Some things the concept of access could do for a local government:

  • Create a unified way to measure, manage, and optimize resources across multiple modes and investments towards human-centered outcomes
  • Bring together various existing policy issues (e.g. commute times to work, availability of low-stress bikeways, wheelchair access, etc) into a single rubric.
  • Establish a focal point to integrate planning activities that are currently diffused and disparate (e.g., parking policy and TDM proposals), creating the potential for a more powerful and deliberate way to coordinate investments 
  • Provide a new way to evaluate equity with a higher degree of discernment and control in managing initiatives aimed to increase well-being in targeted populations.

In conclusion, access provides a way to understand and integrate the management of transportation and lanes use across modes and in urban, suburban, and rural environments.

Categories
Uncategorized

Efficiency improvements through electric vehicles: You don’t know the half of it

Electrifying transportation seems like magic because the core machine is so much better at turning energy into motion.

A typical electric drivetrain is about three times as efficient as a gasoline one, and it runs on a fuel that can steadily move toward being 100% renewable and carbon-free.

EVs bring other benefits too, like quiet streets and low maintenance, but the headline is simple. Its superpower is efficiency. We are talking about roughly 0.27 kWh per mile for a mid-size EV, equivalent to about 125 MPG.

That gap alone is enough to deeply cut emissions as the grid cleans up. Yet there is another side to efficiency that most people miss.

The way most of us travel day to day is overbuilt for the job. One person, often alone, moving at low average speeds through city streets in a 3,000 to 5,000+ lb vehicle.

Most of the energy goes to pushing a heavy machine and a lot of air, not to moving a human body. On a typical urban trip, about 95% of the energy moves the vehicle, and only about 5% moves the person.

That is not a moral judgment. It is physics.

When you repeatedly accelerate two tons in stop-and-go traffic, you spend energy on mass. When you cruise with a large frontal area, you spend energy on drag. Either way, the human is the smallest part of the payload.

The battery-electric revolution opens the door to right-sized electric mobility that flips this ratio. Electric motors scale beautifully. They are compact, efficient, and happy at many sizes.

That is why we now have an entire family of vehicles that can deliver a full trip at a fraction of the energy. Think e-scooters, e-bikes and cargo bikes, mopeds, compact city EVs, and neighborhood electric vehicles. The savings are not subtle.

A typical e-bike uses about 10 to 20 Wh per mile. At the U.S. average residential electricity price, that is well under one cent per mile. A small neighborhood EV might use 80 to 150 Wh per mile, still many times less than a full-size car.

Compare that with a gasoline sedan at around 1,100 Wh per mile worth of fuel energy, or even a mid-size EV at about 250 to 300 Wh per mile, and the order-of-magnitude difference becomes clear.

Right-sizing brings other gains. Smaller electric vehicles need smaller batteries, which lowers cost and materials demand. They can charge from an ordinary outlet overnight. Parking gets easier. Streets get calmer. Air gets cleaner where people live.

These are resilience benefits as well. A household with a mix of light electric options can keep moving even during fuel disruptions, and a car with a modest battery can backstop outages at home with vehicle-to-load gear. Cities that shift short trips to light electric modes need less space and less money to move more people.

None of this argues against the mainstream EV. For many trips, a conventional car is the right tool, and replacing a gasoline car with an electric one cuts energy use by a factor of three or four before you account for the grid’s ongoing shift to renewables. It is simply that our efficiency story is incomplete if it stops at the car-for-car swap. The lowest-cost, lowest-carbon, and most space-efficient miles will often be ridden, not driven.

The good news is we are already living in this future. Most urban trips are short enough for light electric mobility. In the United States, roughly half of all trips are under three miles. That is e-bike territory for many people and many days, with weather gear and cargo options making it practical for more. Cities that add safe networks for small vehicles see rapid uptake, because the product is compelling. It is fun, fast enough, cheap to run, and simple to maintain.

If you want a simple mental model, use this. Electrification gives you a big step up in efficiency at any vehicle size. Downsizing gives you another. Stack them and you get both deep decarbonization and better daily life. We can triple drivetrain efficiency by moving from internal combustion to electric. We can multiply total-system efficiency again by choosing the smallest electric that does the job. The result is cleaner air, lower costs, quieter streets, and far less energy burned to move the same person from A to B.

So by all means celebrate the conventional electric car. It is a workhorse and a crucial climate tool. Then look at the rest of the electric toolbox and pick the right size for the job. The fastest way to win on energy and money is to electrify, and then right-size.