Categories
Uncategorized

Want $1 Million? Drop that extra car

Most people think of their cars as working for them. They imagine convenience, freedom, maybe even status.

But for many American households, especially those with an unnecessary extra car, that second or third vehicle quietly burns through enough money to take away real long‑term wealth.

If you want a surprisingly powerful path toward $1 million, start by exploring whether you really need every car in your driveway.

The hidden cost of owning a car

Owning a car or more per adult is normal. Monthly payments are normal. Gas, insurance, repairs, registration, parking, and random fees are normal.

But “normal” is expensive.

According to data from the U.S. Bureau of Labor Statistics, the average American household spends around $12,000 per year on transportation, and the largest portion of that is personal vehicles, including the cost of the car itself, insurance, fuel, maintenance, and repairs (U.S. Bureau of Labor Statistics, 2024). That’s about $1,000 a month, per household, tied up in keeping cars on the road.

In many two‑ or three‑car households, one of those vehicles is barely essential. It’s a convenience. A backup. A “just in case.” That “just in case” can be the difference between coasting financially and becoming a millionaire over time.

What if you invested your car money instead?

Let’s say you find a way to live with one fewer car. You sell it, cancel the insurance, stop paying to fuel and maintain it, and you redirect that $1,000 a month into an investment account instead.

Now invest that $1,000 per month consistently for 25 years and earn an average annual return of 8 percent (compounded monthly for simplicity):. What you get:

$946,000

So getting rid of an unnecessary extra car and investing the savings could put you within striking distance of one million dollars over 25 years.

Not by being a brilliant entrepreneur, taking big risks, or by winning the lottery. Just by not owning a vehicle you don’t truly need and investing what you would have spent on it.

But do I really “spend” that much on my car?

Many people underestimate what a car costs because they only think about the monthly payment.

Here’s what usually gets missed:

  • The payment (if you have a loan or lease)
  • Insurance premiums
  • Gas
  • Routine maintenance (oil changes, tires, brakes, etc.)
  • Unexpected repairs
  • Registration and taxes
  • Parking, tolls, tickets

The American Automobile Association (AAA) regularly estimates that the annual cost to own and operate a new vehicle is in the five‑figure range when you add all of those pieces together (American Automobile Association, 2023). If you’re driving something newer or higher‑end, or you live in a high‑cost city, your real number may be even higher.

If your “extra” car is financed, the financial drag is even worse: you’re paying interest on a depreciating asset that’s losing value every year.

The lifestyle tradeoffs that make this possible

Dropping from two cars to one (or from three to two) isn’t always painless. It usually requires some mix of adjusting commuting patterns, occasionally using rideshare or car‑share, carpooling with coworkers, friends, or family, and/or planning errands and appointments more rigorously.

It may involve getting a bike, ebike, and/or using the bus more. And it all might be easier or harder depending on where you live.

But notice something important: even if you sometimes use taxis, rideshare, or short‑term rentals, that doesn’t come close to the full cost of owning, insuring, and maintaining an extra vehicle for the entire year. The all‑in ownership cost is what quietly kills your wealth.

Some families find that rethinking where they live is part of the equation: moving a bit closer to work, transit, or schools can lower or eliminate the need for that extra car, and also reduce stress and commute time.

This isn’t just about deprivation. It’s about thinking more strategically about transportation for a lot more long‑term freedom.

Why 25 years matters more than you think

Twenty‑five years sounds like forever, but it isn’t. It’s the difference between being 30 and 55, or 40 and 65. Those years are going to pass no matter what. The question is whether each of those months brings you a step closer to financial independence, or just another oil change and insurance bill.

The power is compound growth. When your $1,000 goes into an investment account earning around 8 percent per year on average, your contributions start earning returns, then those returns start earning returns. Over time, your growth accelerates, especially in the later years.

That’s why the decision to drop an unnecessary car early in your financial life can be so powerful. The longer your money has to grow, the more dramatic the result.

Your mileage may vary

This millionaire math uses round numbers to make the point clear. Real life is messier.

The example assumes you save and invest $1,000 per month for 25 years at an 8 percent annual return and end up with around $946,000. With a few more years of investing, you would likely cross the $1 million mark.

You can also adjust the levers: maybe you can only free up $500 per month, or maybe you can redirect $1,500. Maybe your average return is 6 percent instead of 8, or you hit a long stretch of strong markets and do better. None of these inputs are guaranteed; they are tools to help you visualize what’s possible.

You might look at $12,000 per year and think, “I don’t spend that much on my car.” That could be true. But it could also be an underestimate. Many people only think about the payment and gas, and forget insurance, registration, maintenance, and repairs. On the other hand, you might be spending much more. In recent years, many buyers have taken on large loans at high interest rates, often on vehicles that depreciate faster than the loan balance is paid down. That leaves them “underwater,” owing more than the car is worth, and feeling stuck. In those cases, the true annual cost can be well above that $12,000 benchmark.

You might also be in a situation where you can’t offload a car easily. Maybe you need it for work. Maybe the resale value is too low compared with what you owe. Maybe your family’s logistics feel impossible with fewer vehicles. That is all real. But there is usually still room to move somewhere on the spectrum. You might not be able to sell a car today, but you might be able to:

  • Decide that your next car will be one you can afford in cash, not with a high‑interest loan
  • Refinance an expensive loan if possible
  • Drive less, combine trips, or carpool to reduce fuel and wear‑and‑tear
  • Use transit or biking for some trips and delay buying an additional vehicle
  • Set a firm cap on how much of your income will go to transportation

The point is not that every person should immediately dump a car and invest $1,000 a month. It is that cars are one of the biggest and most unexamined expenses in modern life, and we often underestimate how much they cost and how much wealth they displace.

So treat this article as a guide and a thought experiment, not a strict prescription. It is meant to highlight just how much money flows into vehicles, how strongly we are nudged to spend on them, and how powerful it can be if you create even partial alternatives. Whether that means going from three cars to two, stretching the life of a paid‑off car, avoiding a luxury upgrade, or planning to buy your next car in cash, small shifts away from automatic car spending can be surprisingly profitable over the long run.

How to know if an extra car is really “unnecessary”

Ask yourself:

Could we realistically coordinate schedules with one fewer car most days?

Are we keeping a vehicle mostly for rare situations (worst‑case scenarios vs daily needs)?

How many days per month does this car actually get used?

Would occasional rentals, rideshare, or car‑share be cheaper than owning this vehicle year‑round?

Can we move—or think differently about a future move already planned?

If a car is driven infrequently, mostly for convenience, or simply because “we’ve always had two cars,” that’s a signal. It may be less a tool and more a habit.

The mental shift: from car pride to good-decisions pride

Cars are visible status symbols. Investments are invisible. That makes it easy to prioritize the wrong thing.

When you reduce the number of cars you own, it might not show on Instagram. But it shows up quietly in your balance sheet.

Over years and decades, it can be the difference between consistently feeling stretched and building a substantial investment portfolio that supports you and your family

Think of every nonessential car payment as a missed investment deposit. When you flip that around, you’re not “giving up” a car. You’re buying long‑term freedom.

Twenty‑five years from now, you might look back at your old driveway and realize that the best “vehicle” you ever owned was not a car at all, but your investment account.

References

American Automobile Association (2023) tor. Your Driving Costs: How Much Are You Really Paying to Drive? https://www.aaa.com/autorepair/articles/your-driving-costs

U.S. Bureau of Labor Statistics (2024) tor. Consumer Expenditures in 2023. https://www.bls.gov/news.release/cesan.nr0.htm

Categories
Uncategorized

Primer on how the UN COP process supports US climate action

The UN climate conferences do not write US law, yet they change what countries, companies, cities, and investors actually do.

COPs create shared timelines and yardsticks, translate science into clear messages, and convene coalitions that make credible action easier to recognize and finance.

That force multiplier reaches Congress and federal agencies, and it reaches governors, utility commissions, mayors, school districts, and tribal and regional governments.

In a federal system where delivery is distributed, the strongest results come when national and subnational actors move in step with global signals.

The COP as a catalyst for decisions that are made at home

No COP can compel votes on Capitol Hill or at a statehouse. What COPs do is synchronize clocks, define credibility, and concentrate attention.

The cycle of national climate plans and the Global Stocktake turn distant goals into near term milestones.

Guidance on net zero claims, methane accounting, and sector road maps sets a reference for regulators, investors, and civil society.

The events themselves gather public and private leaders in one place, which speeds deals that would take months in normal time.

The result is a steady pull on policy, procurement, and investment decisions across US institutions.

How COPs stimulate commitments beyond national decisions

Deadlines bring action forward. As COP dates approach, agencies and companies look for announcements that show momentum. That deadline effect pulls forward rules, grants, and procurements that might otherwise wait.

Shared expectations define what counts as credible. When there is clarity on methane measurement or on steel and cement pathways, federal departments, state regulators, and corporate boards can align their standards and purchasing.

Coalitions reduce risk for first movers. International buyer and producer groups on clean power, zero emission vehicles, shipping fuels, and low carbon materials lower market risk and unlock offtake agreements that justify US investment.

Finance aligns around pipelines. Development banks, green banks, and private lenders use COP to standardize program templates. That makes it easier for smaller US cities and utilities to join and easier for federal programs to blend public and private capital.

Co-benefits move to the center. Health, affordability, jobs, and time saved are now core parts of the COP narrative. That framing helps build durable coalitions for action in the United States.

Why COP outcomes matter for US federal action

Competitiveness and trade are on the line. Global buyers are demanding low carbon materials and clean power. The European Union is phasing in a carbon border adjustment. US producers that can verify lower emissions will protect market share and may gain it. COP signals help justify federal incentives for clean heat, electrified processes, and cleaner logistics and they support Buy Clean requirements that value low embodied carbon.

Federal rulemaking and guidance draw on international norms. Environmental and energy agencies look to global methods on measurement and verification when shaping standards.

Stocktake findings and sector road maps inform rule design at the Environmental Protection Agency and the Department of Energy, and they influence procurement rules at the General Services Administration and the Department of Defense.

When federal purchasing rewards outcomes such as comfort hours, uptime, and low embodied carbon, markets move.

Finance mobilization benefits from convergence on metrics. COP aligned disclosure and transition planning support the work of US financial regulators and voluntary reporting frameworks. Green banks and federal loan programs can use shared metrics to crowd in private lenders at scale while keeping affordability safeguards.

Energy security and price stability improve with the shift that COPs promote. Efficiency, electrification, and diversified clean supply mean more domestic manufacturing of heat pumps, transformers, batteries, and grid controls. Less exposure to fossil price shocks is good for households and for national security.

Health and affordability gains are central. COP emphasis on health gives cover and urgency to rules on soot and ozone, methane and volatile organic compounds, indoor air quality, and urban cooling. These rules cut medical costs and lower energy bills.

Why COP outcomes matter for US states and cities

States set clean power targets and building codes. Municipalities control land use, housing strategies, transit frequency, street design, shade, and cooling centers. Public utility commissions decide how fast utilities invest in grids, demand flexibility, and storage. School districts and hospital systems are giant energy customers. COP road maps and networks offer ready templates and finance that local actors can adopt quickly.

Standards and model policies will spread faster. Building performance standards, clean construction and Buy Clean specifications, zero emission truck and bus rules, and cooling action plans are moving through state and city networks. COP guidance gives these policies a common language and metrics, which lowers the cost of adoption and compliance.

Procurement will tilt toward buying outcomes and services. The services conversation at COP will show up in bids that pay for comfort, reliability, clean air, and trip speed. A school district can procure classroom comfort by bundling envelope upgrades, heat pumps, ventilation, and maintenance with pay as you save tariffs. A transit agency can procure on time service with zero emission fleets rather than only buses. A hospital system or water utility can procure resilience and uptime through performance based microgrids. Once a few large buyers standardize contracts and data, peers can copy them and scale the market.

Finance will move through standardized programs. COP is where multilateral lenders, green banks, and private capital converge on program templates. In the United States that enables state green banks, infrastructure banks, and municipal issuers to package retrofits, distributed energy, fleet electrification, and cooling networks into repeatable portfolios with common verification. Smaller jurisdictions benefit most because templates lower legal costs and protect low income customers.

Utility regulation will absorb global best practice. Breakthrough metrics on system flexibility, demand response, and interconnection speed will inform performance based regulation at state commissions. Expect wider use of outcome metrics such as avoided outages, interconnection cycle time, flexible load enrolled, and hourly carbon intensity of delivered electricity. These will pair with around the clock clean power procurement by cities, universities, and corporate buyers, which strengthens the signal for storage and transmission.

Ports and industry will organize around cross border corridors and buyers clubs. Green shipping corridors create specific routes where ports, carriers, fuel suppliers, and cargo owners commit to lower carbon operations. US ports on the West Coast, the Gulf, and the Atlantic will use these corridors to attract federal and private funds for bunkering, shore power, and efficient landside logistics. Buyers clubs for clean steel, cement, and aluminum will help states implement clean procurement for roads, bridges, schools, and public housing while keeping contractors competitive.

Health and heat will anchor local action. COP attention to health makes it easier for state health departments and city heat officers to justify investments in cooling networks, tree canopy, reflective surfaces, indoor air upgrades, and clean cooking. Expect growth in heat season playbooks, home cooling support for vulnerable residents, and resilience hubs in libraries and community centers.

How federal and subnational action can reinforce each other

As the next round of national climate targets takes shape, states and cities can feed quantified pipelines in power, buildings, transport, and industry into federal planning. In return, federal grants, tax credits, and procurement can prioritize projects that use shared COP metrics and verification, which makes progress provable at home and credible abroad.

Federal agencies can publish short sector playbooks that translate COP road maps into US ready actions with model contracts and data standards. Grant windows and procurement rounds can be timed with global cycles so US announcements ride the same wave as international partners. Technical assistance and open data can help smaller jurisdictions adopt best practice without heavy consulting costs.

States and cities can pick a few COP aligned plays that deliver visible benefits. A district wide comfort program for schools can cut bills and improve learning. A zero emission bus service contract with on time guarantees can boost ridership and air quality. A neighborhood cooling and heat health program can protect residents in the hottest weeks. An interconnection sprint with public dashboards can clear backlogs and enable more rooftop solar and batteries. Each play should use common metrics that peers are adopting to make financing and replication easy.

Illustrative national and local spillovers already underway

The Global Methane Pledge raised the profile of methane across energy and agriculture. The result is stronger satellite detection, more attention from producers, and faster uptake of low cost fixes. US methane standards and voluntary programs draw strength from this momentum and they create service markets for detection and repair that local firms can serve.

The First Movers Coalition gathered buyers for low carbon steel, cement, aluminum, shipping, and aviation fuels. US procurement and domestic investment credits create demand and supply at the same time, which lowers costs for industrial decarbonization and keeps US manufacturing in the race. States can align their Buy Clean policies to the same product rules and labels to amplify that effect.

The Breakthrough Agenda produced road maps for power, road transport, hydrogen, and industry. These road maps inform utility resource planning, state clean transport strategies, and federal purchasing guidance, and they steer demand toward cleaner supply chains that US producers can serve.

Article 6 pilots are improving methods for high integrity crediting. Even before a mature market exists, this signals to US project developers and buyers that better baselines, monitoring, and benefit sharing are coming. States and cities can use the same methods for results based payments in landfills, wastewater plants, building retrofits, and urban nature projects while maintaining safeguards.

The bottom line

COPs do not substitute for US lawmaking, yet they shape expectations, define credibility, and align finance in ways that help both federal and subnational leaders move faster.

The likely future is two way traffic. States and cities will feed concrete pipelines and metrics into national and global processes. Federal agencies will pull down templates and capital that make delivery cheaper and quicker on the ground.

If the United States leans into that exchange, it will get cleaner and more reliable energy, healthier air, safer heat seasons, competitive industries, and communities that see tangible improvements in daily life.

Categories
Uncategorized

Wrap-up of COP30 in Belém: Developments and what’s next

The COP30 climate talks in Belém, Brazil closed with a familiar mixed message: the headline cover decision reaffirmed the 1.5°C limit and called for “transitions” in energy and economies, but stopped short of a clear, time‑bound fossil‑fuel phaseout and left finance and carbon‑market rules largely unresolved.

That gap between ambition and delivery is where the action now moves—to 2035 nationally-determined commitments (NDCs), to sector transitions guided by the IPCC, to health and wellbeing co‑benefits, and to cities, states, and service innovators who can make climate progress tangible.

Alignment with the IPCC’s “major transitions”

IPCC AR6 lays out the big shifts needed this decade. Power must decarbonize and end use must electrify. Industry needs efficiency and fuel switching. Transport and buildings require strong demand side changes. Land food and nature based solutions must expand. Finance and governance reforms must enable these changes in ways that are feasible and just.

On energy and fossil fuels, the cover decision invoked transitions and allowed for abatement and CCS, but it did not codify a universal fossil fuel phaseout. It reiterated scaling clean energy and efficiency consistent with IPCC least cost pathways, yet without stronger time bound collective targets. The net effect is a political signal to keep shifting capital while continued ambiguity risks a slower drawdown of coal oil and gas.

On 2035 NDCs, parties were urged to submit new economy wide targets aligned with 1.5°C. This matters because it sets a near term deadline for whole economy planning and, if done well, can drive integrated transitions across power transport buildings and industry rather than a set of siloed pledges.

On adaptation and resilience, negotiators advanced work on operationalizing the Global Goal on Adaptation with more clarity on indicators and reporting and less on quantified global targets. This helps countries design risk informed and locally appropriate transitions that remain robust under uncertainty.

On finance and feasibility, delivery pathways for climate finance still lag needs. Without clearer concessional flows and debt relief the feasibility dimension that combines institutions finance and capacity remains a bottleneck for many economies.

On process innovation, the Brazil Presidency draft Mutirão text was described in mid-COP briefings as a menu-based push on implementation. This signals a pivot from one-size-fits-all to practical options that countries can pick up. If carried into the 2035 NDC cycle, it could accelerate uptake of proven transition packages.

The bottom line on transitions is that COP30 nudged system wide planning with 2035 NDCs and adaptation metrics, but it left the core mitigation signal weaker than the IPCC call for rapid deep and sustained reductions. Delivery now hinges on national policy packages and real economy coalitions that move power transport buildings industry and land together.

Role of affordability, health, and other wellbeing

A notable advance at COP30 was the prominence of health and quality of life framing. The WHO Special Report Delivering the Belém Health Action Plan lays out a practical agenda to integrate health into climate action through climate resilient and low carbon health systems, cleaner air, heat health protection, and finance models that value health benefits.

In practice, more parties and partners signaled plans to embed health metrics in climate policy. They plan to track avoided deaths from cleaner air, reduced heat risk, and the resilience of clinics. This reframes climate policy as a public health dividend and not only an emissions ledger.

Demand-side measures for affordability and comfort gained attention. Efficient all-electric homes, passive and district cooling, and clean cooking can reduce bills, improve indoor air, and deliver thermal comfort, especially for low-income households.

Time saved and access also featured. Mobility investments that emphasize high frequency transit, safe walking and cycling, and integrated ticketing reduce commute times and improve access to jobs and services. These multiple benefits are often undervalued in cost benefit analysis.

This matters because policies that foreground lower energy poverty, better air, safer heat seasons, and shorter commutes tend to be more durable politically and faster to scale.

The Belém Health Action Plan offers a template that ministries can adopt now, with indicators that resonate beyond climate circles.

Subnational developments

The Presidency spotlighted cities, regions, tribal, and Indigenous governments as delivery agents. An official evening summary on November 11 emphasized how local and subnational leadership is driving real world climate progress in peoples homes.

Cities and states showcased local implementation plans that braid climate health and affordability goals. Examples include building performance standards, all electric codes for new buildings, rental retrofit programs, and cooling action plans.

They advanced fleet and infrastructure pivots such as zero emission buses, municipal fleets, freight corridors, and EV ready streetscapes, paired with reliability upgrades to distribution grids.

Nature and resilience programs featured urban tree canopies, blue green stormwater systems, fire smart land use, and nature based coastal buffers as no regrets moves that also improve daily life.

Finance innovation is helping smaller jurisdictions attract private capital while protecting low income households by packaging projects into standardized programs such as pay as you save retrofits, green mortgages, and resilience bonds.

This matters because subnational governments control many levers that shape user experience including permits codes service standards transit frequency and cooling centers. Their plans can translate COP speak into renovations routes and shade on the ground.

Focus on services to unite policy with user experience and value

One evolution at COP30 is the treatment of climate solutions as services and not only technologies. The focus is on meeting needs such as mobility, thermal comfort, cooling, clean cooking, and reliable power through integrated offers that align incentives from the start.

A services lens accelerates climate action in several ways. Clear value propositions help because people buy outcomes rather than kilowatt hours, for example mobility as a service that delivers fast reliable and safe trips, comfort as a service that delivers quiet healthy and stable indoor temperatures, and cooling as a service that guarantees performance without upfront cost.

Policy fit improves when service performance standards such as comfort hours trip times and air quality targets sit alongside emissions standards.

Public procurement can buy services for example contracted comfort for schools and hospitals instead of equipment, which enables aggregators to finance upgrades at scale.

Ownership of the user experience reduces friction when one accountable entity handles design delivery maintenance and billing, with bundles that include financing warranties and simple apps that make clean choices the easy default.

Equity by design becomes practical because services can embed affordability through lifeline tiers on bill tariffs and targeted subsidies that guarantee comfort and access for renters and low income households who are often locked out of capital intensive technology.

Data and verification also improve because service contracts create measurable outcomes such as comfort hours avoided outages and on time trips which can anchor results based finance and where appropriate high integrity carbon and health crediting.

Near‑term service plays to watch:

  • Thermal comfort services for social housing and schools, combining envelope, heat pumps, and ventilation with pay‑as‑you‑save tariffs.
  • Cooling‑as‑a‑service in hot cities, linked to heat‑health plans and time‑of‑use pricing.
  • Clean‑cooking service subscriptions that bundle stoves, fuel access, and maintenance.
  • Mobility subscriptions that integrate transit, bike/scooter share, and first/last‑mile shuttles.
  • Reliability‑as‑a‑service for critical facilities, pairing rooftop solar, storage, and microgrids under performance contracts.

Wrap-up

So, did COP30 move the needle? The signal is moderate because the cover text uses transitions language that keeps 1.5°C on the agenda but it avoided a clear fossil phaseout.

The structure is useful since 2035 NDC guidance, adaptation metrics work, and the Brazil Presidency’s menu style implementation push give countries and cities a clearer runway to act.

The substance is still to be delivered, and the most credible progress now lies in national policy packages, subnational implementation, and service based business models that foreground health, affordability, comfort, and time.

Looking ahead, watch for the first wave of 2035 NDCs and whether they are economy-wide, IPCC-aligned, and grounded in just locally led transitions.

Track how quickly countries operationalize the Belém Health Action Plan in budgets, clinics, heat health systems, and clean air rules.

See whether cities and states move building retrofits, cooling programs, and transit upgrades from pilots to standardized and financeable portfolios.

Monitor whether ministries, school districts, and utilities begin procuring outcomes such as comfort, reliability, and trips at scale.

References

UNFCCC (22 Nov 2025). Outcomes Report of the Global Climate Action Agenda at COP 30. UNFCCC. https://unfccc.int/documents/655037

COP30 Presidency (15 Nov 2025). COP30 Evening Summary – November 15. COP30 Presidency. https://cop30.br/en/news-about-cop30/cop30-evening-summary-november-15

European Parliament (17 Nov 2025). COP30 outcome: slow progress, but insufficient to meet the climate crisis urgency. European Parliament. https://www.europarl.europa.eu/news/fr/press-room/20251117IPR31438/cop30-outcome-slow-progress-but-insufficient-to-meet-climate-crisis-urgency

Categories
Uncategorized

The “cost of place:” Why housing and transportation are the same household bill

People tend to separate housing from transportation when they budget. From a savings standpoint, they are one decision about where you live and how you get around.

The cost of place is the combined monthly cost to keep a roof over your head and to reach work, school, groceries, friends, and care. Tools like the H+T Index were created to make that combined cost visible.

A lower rent or mortgage on the edge of town can raise the cost of place. Longer trips mean more fuel, more maintenance, higher insurance, more parking, and often one more car. A higher rent in a location efficient neighborhood can lower the cost of place if it lets you own fewer cars and make shorter trips.

A simple example is one household that pays $2,200 for rent and $150 for transit or occasional rides, compared with another that pays &1,700 for housing but $900 to $1,200 for two cars. The second household looks cheaper on paper until you add transportation.

What it means for households

Shop for the combined monthly number, not just the rent or mortgage. List expected car ownership and use, parking, insurance, fuel, maintenance, and any transit or rideshare spending.

Compare neighborhoods on that total. Test scenarios that trade one car for a monthly transit pass, carshare, or e bike.

Consider the value of time. Shorter trips and fewer car errands can free hours each week and lower stress.

When viewing homes, look for daily needs within a short walk or a single transit ride and ask about unbundled parking so you do not pay for spaces you do not use.

What it means for cities and policymakers

Cities can drive up the cost of place when land use rules push homes far from jobs and daily needs and when streets and parking policy make car travel the only viable option.

Minimum lot sizes, bans on apartments and missing middle housing, strict height caps, setbacks that force low density, and lengthy approval processes suppress homes in town where transportation costs are lower.

Parking minimums raise building costs and spread destinations apart.

Single-use zoning separates homes from shops and schools which lengthens trips and locks in car dependency.

Inadequate transit that fails to provide a realistically useful way to get around.

Street designs that prioritize fast through traffic over safe walking, biking, and transit add to those costs.

To lower the cost of place, allow more homes near jobs, schools, parks, and frequent transit.

Legalize duplexes, triplexes, courtyard apartments, and accessory dwelling units. M

Upzone near transit and main streets and permit mixed use buildings so errands are close. Replace parking minimums with context sensitive maximums, unbundle parking from rent, and price curb parking so spaces turn over.

Invest in reliable buses and trains, dedicated bus lanes, safe bike networks, and safer crossings so fewer households need multiple cars. Encourage transit oriented development on public and private land. Speed approvals for projects that add homes in location efficient areas.

Align school and public facility siting with walkable and transit served locations.

Use inclusionary tools and land value capture carefully so they add homes where access is best without stalling production.

Consider demand management like employer transit benefits and cash out for parking.

These actions reduce both the need to drive and the number of vehicles per household which lowers monthly costs.

Bottom line

The cheapest address is not always the most affordable once you add the cost to get around. Treat housing and transportation as one decision and aim for a lower cost of place.

References

Center for Neighborhood Technology (n.d.). H+T Affordability Index. Center for Neighborhood Technology. https://htaindex.cnt.org/
U.S. Department of Housing and Urban Development and U.S. Department of Transportation (n.d.). Location Affordability Index. HUD and DOT. https://www.locationaffordability.info/
AAA (2024). Your Driving Costs. AAA. https://newsroom.aaa.com/auto/your-driving-costs/
U.S. Bureau of Labor Statistics (2024). Consumer Expenditures. U.S. Bureau of Labor Statistics. https://www.bls.gov/cex/
Ewing, R., and Cervero, R. (2010). Travel and the Built Environment. Journal of the American Planning Association. https://doi.org/10.1080/01944361003766766
Litman, T. (2024). Transportation Affordability. Victoria Transport Policy Institute. https://www.vtpi.org/affordability.pdf
U.S. Environmental Protection Agency (2013). Location Efficiency and Housing Choice. U.S. Environmental Protection Agency. https://www.epa.gov/smartgrowth/location-efficiency-and-housing-choice
Harvard Joint Center for Housing Studies (2024). The State of the Nation’s Housing 2024. Harvard Joint Center for Housing Studies. https://www.jchs.harvard.edu/research-areas/reports/state-nations-housing-2024

Categories
Uncategorized

How to think about e-bikes and safety

E-bikes present new safety concerns. They are faster and therefore crashes are more prone to being serious compared with a conventional bike. And they are creating higher volumes of people traveling at a wider range of speeds on multiuse paths (MUPs).

They also let more people take short trips without a car. That reduces exposure to high-speed traffic and lowers crash energy on our streets. And they expand access for older adults, teens, and people facing long distances or hills.

So, e-bike safety is about e-bikes, but it’s also about how e-bikes can contribute to a safe and healthy transportation system overall. In sum, it’s about how we manage the mix of speeds and the quality of the places where we ride and walk.

Key issues to watch

Speed and mass. E-bikes are heavier and can be faster than acoustic bikes. Higher speeds raise stopping distance and crash severity. Managing speed where people mix is essential.

Street mixing with fast traffic. Many crashes involve overtaking by cars on streets without protection. Network gaps push riders to choose between stressful traffic or crowded paths.

Shared-path conflicts. Multiuse paths now host walkers, joggers, kids on scooters, and e-bikes at different speeds. Passing and speed differentials create risk, especially at blind corners and path intersections.

Youth riders. Teens are using e-bikes for school and jobs. Skills, judgment, and device choice vary. Parents and schools need clear guidance and training resources.

Battery and charging safety. Poor quality or damaged lithium-ion batteries can overheat or catch fire. Certified equipment, proper chargers, and safe charging locations reduce risk.

Device classification confusion. Class 1 and 2 e-bikes behave like bicycles in most settings. Higher-powered e-mopeds and DIY builds ride faster and weigh more. Lack of clarity leads to misuse of paths and sidewalks.

Visibility. Night riding without lights, poor lane positioning, and quiet approach can surprise others. Bells, lights, and predictable lines help.

Maintenance and equipment. Worn brakes, underinflated tires, and loose racks or child seats degrade handling. Regular checks matter more at higher speeds and loads.

Behavior and etiquette. Speeding near pedestrians, buzzing passes, wrong-way riding, distraction, and impairment drive a share of serious conflicts.

Where consensus is emerging

Design the street for safety. Lower default urban speeds to 20 to 25 miles per hour and accelerate the development of connected protected bike networks on higher speed or high volume streets.

Manage speed where people mix. Set and communicate clear expectations on multiuse paths. Slow zones near playgrounds and waterfronts, posted limits, and design cues that nudge lower speeds are gaining support.

Prioritize behavior over blanket bans. Target dangerous operation and conflict points rather than banning entire device categories. Focus rules on speed, yielding, and passing.

Clarify classes and align access. Treat Class 1 and 2 like bicycles in most places. Keep Class 3 to streets and protected lanes, not crowded trails. Require registration and equipment for e-mopeds where applicable.

Raise the bar on battery safety. Require or prefer UL certified systems for bikes, batteries, and chargers. Promote safe charging rooms, outdoor charging at hubs, and trade-ins for unsafe batteries.

Educate riders and families. Scalable training through schools, retailers, and community groups is effective. On-bike skills, route choice, and maintenance basics reduce risk fast.

Support delivery riders. Provide charging, secure parking, restrooms, and safe curb access. Partner with platforms and battery providers to phase in certified swappable batteries.

Use data to manage the mode. Track e-bike exposure, not only crashes. Distinguish device types in reports, capture near misses, and evaluate per-mile risk. Use this to target investments.

An agenda for communities

#1. Set safe speeds on local streets. Adopt 20 to 25 mile per hour defaults and use traffic calming so e-bikes and acoustic bikes can mix comfortably with cars.

#2. Build a connected protected network. Deliver continuous protected lanes on arterials and through tricky junctions. Fill the worst gaps first and connect homes to schools, jobs, and transit.

#3. Enhance traffic control at conflict points. Focus on intersections and places of low visibility with paint or other features, speed limit signs, mirrors where appropriate, and designs that slow users before conflict zones. Establish clear rules for paths and parks, with simple speed guidance, require yielding to pedestrians, and mark centerlines, slow zones, and blind corners. Back it with education before citations.

#4. Clarify device classes and access. Align local codes with Class 1, 2, and 3. Keep Class 3 off crowded trails. Define e-mopeds and require required equipment and registration where state law applies.

#5. Focus enforcement on the top risks. Target speeding, wrong-way riding, sidewalk riding in busy districts, and failure to yield at crosswalks. Use warnings and diversion to education before fines.

#6. Work with parents and school districts to help families make informed choices about purchasing and travel behavior. Help to differentiate between pedal-assist e-bikes and more powerful full electric motorcycles, often called e-motos. Provide onboarding experiences and guidance that support legal and safe operation that does not harm others.

#7. Launch rider education at scale. Partner with schools, libraries, and retailers for short hands-on classes. Include braking drills, lane positioning, night riding, and cargo or child-carrying tips.

#8. Make e-bike growth and success a goal of transportation planning. Explicitly measure and manage towards growth of the mode. Track access, safety outcomes, trip replacement of car miles, equity of who benefits, and total cost of travel, then manage toward targets.

#9. Measure and publish progress. Add device type fields to crash forms. Deploy counters that distinguish bikes and scooters. Report injuries per million trips and per million miles. Track car trip replacement and equity of access.

E-bike safety is about the promise that e-bikes can make us safer and healthier, especially by giving reedom to people experiencing financial stress and to those who are trapped without an alternative to driving.

E-bikes also offer a serious potential to replace cars and step down the high levels of kinetic energy and problematic driving, including distracted driving, that make our streets dangerous in the first place.

And so the ebike-safety opportunity is an integrated agenda that addresses issues specific to the technology while harnessing it to life all boats.

Categories
Uncategorized

How to make streets safe and turn Vision Zero into a reality

Today is the World Day of Remembrance for Road Traffic Victims, the third Sunday in November. It is a day to honor those lost and those living with life-changing injuries.

It is also a day to be clear about what it takes to stop preventable tragedies from taking place.

The losses are immense, with more than 40,000 people killed each year in the US, and an order of magnitude of people experiencing reported life-changing traffic injuries.

These experience are also uneven, varying from country to country and even from one city to the next.

First truth: Steady human transportation patterns are not accidents.

Severe crashes can feel random, but they are not. Their patterns come from choices we have made about how we design, manage, and enforce our transportation system.

Whatever state, county, or town you live in, you can bet on two things. First, there is a somewhat consistent level and trend in traffic fatalities from year to year. And two, there’s at least an order-of-magnitude jump in cases of life-changing injuries. You can take what happened this year and the fee before it, and pretty well predict what’s going to happen next year.

That yearly statistic is no accident. It’s a designed tolerance, and it is avoidable.

One proof is the big differences between places similar places a short distance apart. For example, Boulder, Colorado has about 3 fatal crashes per 100,000 residents while Thornton and Lakewood both exceed 12.

Whatever the local rate, until deaths and serious injuries are zero, the dominant cause is a system that allows the danger to persist.

Second truth: The dangers and solutions are known.

It is not a mystery what’s going on. Indeed, serious crashes are easy to research, and we know from study after study that they result from specific conditions. Some of those conditions:

  • Kinetic energy. Speed and mass drive harm. When speeds fall, survival rises. When vehicles are smaller and streets self-enforce safe speeds, mistakes are less deadly. That means lower default limits that are backed by design, protected space for people walking and biking, safer crossings, better lighting, and safer fleets and vehicle fronts in cities.
  • Consequences. People will make mistakes. Streets should forgive human error. Tighter corners, protected intersections, daylighted corners, roundabouts where they fit, and clear, visible crosswalks reduce the chance that a mistake becomes a fatal event.
  • Compulsion. Many people have no real choice but to drive for every trip, even short ones, regardless of age, ability, or mental awareness. That raises exposure and stress, especially at odd hours when alternatives are fewer and conditions are even less forgiving. Frequent and reliable transit, safe routes to school and senior destinations, protected micromobility networks, zoning that lets homes sit near daily needs, and smarter curb management give people real options.
  • Centrality. Policy, culture, and enforcement tend to center drivers and larger vehicles while shifting costs to everyone else. Safe System policies that put human life first, clear annual safety targets tied to funding and leadership performance, guardrails on vehicle size and weight in cities, equitable automated speed enforcement, and strong public and private fleet standards rebalance the system.

These dynamics are not about guesses. Cities that act to rebuild intersections, upgrade lighting, and mange speeds are bringing real reductions in deaths and serious injuries.

For advocates of safe streets, two questions come next. What commitments will make the most difference going forward? And how do we minimize preventable tragedy between now and full buildout by compressing timelines to delivery?

Third truth: Making big changes depends on being realistic and respectful about concerns, while doing the hard work of selling a better vision.

Safe streets is a good idea. It saves lives and makes daily life calmer, healthier, and more affordable.

It also brings change. Construction disrupts routines. New patterns take time to learn. Different concepts can conflict with long-held beliefs about how streets are supposed to work and what good transportation governance looks like.

However good staff are at the local public agency responsible for transportation, they are probably limited by elected officials. And those officials are typically not technical experts, so they listen to what they hear from community members.

In sum, safe streets is an excellent policy idea, but upstream from policy is politics, and culture is upstream from that.

So, to have more productive conversations with the community—and electeds—now and over time, use these methods:

Share the vision. What does the destination look like? What’s on the table, in vivid, compelling description? Why is life better for more people, including drivers?

Next, think about setting expectations for any kind of a remodel. You want to do it, but it’s still going to cause some uncertainty, disruption, and a pain. And it’s clearly obvious to anyone observing that you have changes planned that are going to affect their lives. So, say so upfront, listen, and build the list together.

From there, talk about what’s happening as an investment. There are pluses and minuses and we can see how they net out. And indeed, the near term is going to involve some costs, and we will do our best to mitigate them. But we are doing it so we can have something better.

You won’t win everyone. But it is a way to build important support—and minimize easy ways future electeds can reverse course—over time.

A call to action

Finally, the hard part: Commit to sharing these concepts with your local elected officials or agencies at least once per quarter in the year ahead. Pick a city, county, school district, MPO, or state DOT and rotate.

Using these themes as a guide, send a short letter or give two minutes of public comment. Alternatively, write an op-ed in your local paper or speak at a local community event.

If you are already doing this quarterly or more, thank you. Now bring a friend.

Categories
Uncategorized

Policy priorities for good living, thriving communities, and next-level climate action

Policy priorities to advance wellbeing and climate solutions together through urbanism broadly

Working draft

1. Legalize abundant homes in walkable places

Decades of exclusionary zoning push homes far from jobs and services, lengthening car trips and worsening housing scarcity, costs, and emissions.

Solution: Allow more homes near transit and job centers—small apartments, duplexes, ADUs, mixed-use buildings—by-right and with fast approvals. Pair with inclusionary tools and tenant protections so added supply also supports affordability and equity.

2. End parking minimums and start or strengthen Transportation Demand Mangement (TDM) initiatives

Parking mandates inflate housing costs, consume valuable land, and induce more driving, congestion, and pollution.

Solution: Eliminate minimums citywide; price on-street parking by demand; convert excess lots to housing, trees, and storefronts. Manage for TDM and access. Use parking revenue for better sidewalks, transit passes, and neighborhood safety.

3. Prioritize Complete Streets + Safe Speeds (Vision Zero)

Traffic crashes are a leading cause of death, and unsafe, high-speed streets deter walking, rolling, and biking—locking in car dependence and emissions.

Solution: Design for human life: 20–30 mph limits on urban streets, narrower lanes, daylighting, raised crossings, protected intersections, and quick-build materials. Make safety the performance metric, not vehicle flow.

4. Build safe, connected bicycle networks

Most people won’t bicyle outside of a convenient, low-stress network; fragmented lanes leave big gaps in access, health benefits, and mode shift potential.

Solution: Build citywide, protected, all-ages-and-abilities bikeways every quarter mile; add secure bike parking and e-bike charging. Integrate bikeways with transit so longer trips become bike+bus or bike+rail.

5. Invest in frequent and rapid transit, electrified

Slow, unreliable buses and diesel fleets drive riders away and pollute the air, especially in low-income neighborhoods.

Solution: Frequent all-day service, dedicated lanes, signal priority, off-board fare payment, and legible networks—then electrify buses and trains. Invest early in high-ridership corridors and zero-emission depots to cut both CO2 and soot.

6. Move towards 15-minute neighborhoods (complete, mixed-use districts)

Zoning that separates homes, shops, schools, and parks forces long, car-only trips and erodes community health and time.

Solution: Allow and incentivize daily needs within a short walk or roll: mixed-use zoning, corner stores, schools and clinics embedded in neighborhoods, and safe routes that stitch these places together.

7. Enact congestion pricing and fair road use charges

Underpriced driving creates gridlock, unsafe streets, and high emissions while starving transit of funds.

Solution: Charge for scarce road space in peak periods and set delivery/ride-hail fees at the curb; rebate or discount for low-income travelers. Reinvest revenue in faster buses, safer streets, and cleaner air in impacted communities.

8. Build trees, shade, bioswales, and other natural infrastructure into streets

Heat waves and flooding hit cities hardest, raising mortality and damaging infrastructure, with disproportionate impacts on heat- and flood-vulnerable blocks.

Solution: Plant and maintain street trees, cool pavements, bioswales, and rain gardens—prioritizing low-canopy areas and bus stops. Pair with maintenance funding to lock in long-term cooling, cleaner air, and flood resilience.

9. Enable equitable transit-oriented development

Transit-rich land is underused or becomes unaffordable without safeguards, missing climate benefits and displacing the very riders who rely on transit.

Solution: Upzone around stations with minimal parking, mixed incomes, and strong tenant protections. Use value capture, land banking, and community land trusts to deliver permanently affordable homes and local businesses near transit.

10. Reuse and retrofit buildings with clean heat in compact areas

Buildings emit large shares of urban CO2 and air pollution; demolition wastes embodied carbon and money.

Solution: Make adaptive reuse easy; require energy upgrades at point of sale or major renovation; electrify space/water heating with heat pumps; and deploy district energy where density supports it—starting in walkable, transit-rich neighborhoods to maximize uptake and benefits

Categories
Uncategorized

Primer on transit-oriented development

Transit-oriented development concentrates daily life within a 5 to 10 minute walk of high-quality buses, trains, and ferries. The goal is to make transit along with walking and biking the easiest choices for most trips and to reduce car dependence without sacrificing access or opportunity.

Transit-oriented development is a practical way to unite transportation and housing objectives into a single mutually reinforcing framework. When cities plan homes, jobs, shops, parks, and schools around reliable transit the result is shorter trips safer streets lower household costs and stronger local economies.

Key characteristics

Great station areas are compact and mixed use. Homes offices retail schools civic buildings and services sit close together so errands and commutes are simple.

Density belongs at stations. The most active uses and the greatest height are closest to transit and then step down into surrounding neighborhoods.

Design favors people on foot and on bikes. Think short blocks safe crossings active ground floors shade and trees lighting and minimal setbacks.

Access is truly multimodal. Protected bike lanes secure bike parking clear wayfinding and well managed pick up and drop off keep people moving comfortably.

Parking is right sized and managed. Cities reduce or remove minimums unbundle parking from leases share district parking and price the curb.

Transit is frequent and reliable all day. Service every few minutes with seamless transfers and comfortable stations makes the system a default choice.

Mix matters. A range of housing types and prices together with community services supports inclusion and long term stability.

Some examples

Arlington Virginia focused growth along the Rosslyn Ballston corridor with closely spaced Metro stations. Mixed use buildings and excellent streets delivered strong ridership and lively main streets.

Hoboken New Jersey used PATH ferries and frequent buses plus parking reform and infill to enable very low car ownership and thriving street life.

Somerville Massachusetts paired the Green Line Extension with upzoning new housing safer streets and active station plazas.

Cambridge Massachusetts used Red Line station areas and strong bike networks to grow mixed use districts while holding car use down.

Evanston Illinois adopted station area overlays near CTA and Metra reduced parking and enabled missing middle housing near Main and Dempster.

Shaker Heights Ohio created the Van Aken District at a light rail terminus with housing retail and public space on a walkable grid.

Normal Illinois built Uptown Station for Amtrak and local buses then added civic anchors streetscape upgrades and infill that supports small businesses.

Hillsboro Oregon built Orenco Station near MAX light rail with fine grained blocks mid rise housing and neighborhood retail.

Beaverton Oregon intensified around MAX with new housing offices and public spaces at Beaverton Central and nearby stations.

Pasadena California planned around Gold Line stations including Del Mar with mixed use buildings reduced parking and walkable streets.

Santa Monica California anchored the Expo Line terminus with a downtown specific plan plus a strong bike network to support car light living.

Tempe Arizona focused housing and jobs along light rail and the streetcar with unbundled parking and good bike and transit integration.

Rockville Maryland built a town center around Metrorail with housing retail and civic uses and a connected street grid.

Redmond Washington upzoned station areas before Link light rail arrived and is adding thousands of homes and jobs with strong bike access.

Fort Collins Colorado created the MAX BRT with station plans mixed use zoning and safe connections between the university and downtown.

Grand Rapids Michigan aligned BRT corridors with infill housing parking reform and better walking and biking connections.

La Mesa California revitalized its village and trolley stations with small lot infill and safer walking and cycling.

Englewood Colorado redeveloped a light rail site as CityCenter with civic facilities housing retail and a walkable block network.

San Leandro California advanced station area plans for Downtown and Bay Fair with upzoning reduced parking and public realm upgrades.

What it takes to make TOD work

Transit must be frequent reliable and comfortable. Give buses priority in traffic ensure short waits and make transfers easy.

Land use policy must allow mixed use and enough homes near stations. Upzone where the transit is and adopt clear form and design standards. Enable missing middle housing by right in walksheds.

Parking and demand management keep driving optional. Lower or eliminate minimums unbundle costs share parking and price the curb.

The public realm must feel great. Calm traffic shorten crossings build protected bike networks and create welcoming station plazas.

Equity must be built in. Use inclusionary housing community land trusts right to return policies rent stabilization where allowed anti eviction measures and small business support.

Governance and finance matter. Coordinate across departments use value capture such as tax increment financing and special districts and pursue joint development and air rights where feasible.

Market readiness and phasing help projects stick. Lead with civic anchors allow flexible ground floors and deliver projects in manageable phases.

Operations count. Keep stations and public spaces clean well lit secure and easy to navigate and program them with regular activity.

Benefits

Mobility improves and emissions fall. People make more trips by foot bike and transit which reduces vehicle miles traveled and traffic injuries.

Housing supply increases where access is best. Families spend less on transportation which improves overall affordability.

Local economies gain. Foot traffic supports small businesses and mixed use districts improve productivity and resilience.

Public finances benefit. Compact neighborhoods use infrastructure efficiently and produce more tax revenue per acre.

Health and social connection rise. Daily physical activity increases streets get safer and access to opportunity expands.

Pitfalls to avoid

Displacement can occur if values rise without protections. Plan for mixed income housing and small business stability from the start.

Transit without supportive land use underperforms. Upzoning without credible transit also disappoints. The two must move together.

Too much parking and fast arterials undermine walkability and transit use. Create people first streets and manage parking supply and price.

Isolated megaprojects with inward facing superblocks and blank podiums deaden the street. Favor a fine grained public network.

Mandated retail on every ground floor can create vacancies. Concentrate active uses where foot traffic supports them and allow other lively frontages elsewhere.

Ignoring buses and bikes harms first and last mile access. Make bus service great and bike access safe.

Putting park and ride lots on prime station land wastes opportunity. Reserve those sites for homes jobs services and public space.

Common misconceptions

You do not need skyscrapers. Mid rise buildings on a connected street grid often deliver excellent outcomes.

Rail is not the only path. Bus rapid transit and frequent bus networks can support strong transit oriented places when speed and reliability are protected.

Building transit does not guarantee development. Zoning the public realm and market conditions all matter.

Transit oriented development does not mean zero parking. It means the right amount shared and priced in a way that supports the street.

Density alone is not TOD. Without walkability mixed uses and frequent service it will not change travel habits.

TOD does not automatically cause gentrification. Outcomes depend on policy design protections and region wide housing supply.

What city councils need to do

Adopt a clear station area vision that prioritizes homes near transit safe streets and economic inclusion.

Change the rules to allow mixed use and mid to high rise buildings within a half mile of stations.

Eliminate or cap parking minimums and require parking to be unbundled from leases. Allow missing middle housing by right in walksheds.

Hardwire equity through inclusionary housing right to return protections and support for community land trusts and small businesses.

Enable by right approvals when projects match the plan and use objective design standards.

Create value capture districts dedicate a share to affordable housing and the public realm and authorize joint development.

Set measurable targets and report progress each year.

What city managers and local government executives need to do

Stand up a cross functional implementation team that includes planning transportation housing public works legal and finance.

Align the capital plan so utility upgrades complete streets station plazas and bike networks arrive when or before private projects do.

Improve transit reliability with bus lanes signal priority and thoughtful curb management and coordinate service and fares with transit agencies.

Negotiate development agreements that deliver mixed income housing public space and district parking solutions and use joint development and air rights where assets allow.

Use public parcels to de risk early phases and favor long term ground leases over fee sales when possible.

Budget for cleaning lighting security and activation of public spaces and enforce parking and curb policies.

Communicate clearly about tradeoffs construction mitigation and benefits throughout delivery.

What staff planners and subject matter experts need to do

Write station area zones with clear standards for form height floor area and frontage. Allow flexible ground floors and a range of housing types.

Set low or zero parking minimums require unbundling and allow shared and off site parking and demand based curb pricing.

Design streets for people with low stress bike networks shorter crossings daylighted corners slower design speeds and shade and stormwater features.

Plan first and last mile access with wayfinding secure bike parking and well managed pickup and drop off. Bake in inclusionary requirements anti displacement strategies and small business support and monitor outcomes by income and race.

Where applicable use programmatic CEQA and NEPA strategies objective standards and pre approved plan sets to accelerate compliant projects.

Track mode share VMT parking use housing delivery affordability retail performance and safety and publish the data.

Partner early with transit agencies schools utilities employers hospitals universities and community organizations.

Categories
Uncategorized

Transportation needs a purpose—and that purpose should be about wellbeing

Transportation is full of surprises.

One of them: The whole enterprise is generally managed without a logical overall purpose.

It’s true there are lots of transportation metrics: Vehicle miles traveled (VMT), number of people killed or seriously injured (KSI), modeshare, and travel time, for starters.

But what is the problem transportation is supposed to be solving to begin with?

If you said something like “to get people where they need to go,” you’d have company. That’s a common response.

And the surface, it makes sense.

But consider this:

  • For the vast majority of cases, people don’t travel just to make the trip. They travel for another reason—they seek to reach or connect with something specific.
  • Most people spend a large amount of money and time on their travel because few people have access to options that compete with owning and driving long distances in a car. People with lower incomes pay the highest cost: They spend a higher share of their income on driving, which is often a real strain, and the burden falls most to people who can’t afford or find housing close to their daily destinations.
  • The placement of housing and key destinations like jobs, schools, and grocery stores doesn’t happen by luck. Public agencies govern what is allowed to be located where And they govern the allocation of rights, privileges, and funding among different ways people get around.

And so back in reality, thinking about the purpose of transportation as moving vehicles (principally treating cars) for the sake of moving vehicles is actually circular.

It is therefore not surprising that the transportation system, despite 100+ years of development of the car, is making us steadily poorer, sicker, and more divided, it’s one of the most likely things to kill us, and it is one of the top sources of our climate crisis.

To get our arms around the the metrics we care about, and more important, to make transportation work for us, it would help to give the system a more unified logical purpose—and one that is focused on providing measurable human benefit and doing so efficiently.

There are contenders—like access (or access to opportunity) and a subset of that, 15-minute neighborhoods.

But there is so much to do to refine and integrate those and related concepts into policy.

Cities, counties, states, and other jurisdictions who are in a position to update big-picture plans and policies could find big opportunities in this realm.

Categories
Uncategorized

“Level of service” concepts for equitable access and mobility

The concept of “level of service” (LOS) is performance metrics for the services that local governments should be providing–the expectations and standards they should be committed to.

What follows are illustrative LOS metrics for access and mobility that shift performance management from the conventional topic of vehicle delay to people-centered, equity-first outcomes.

They quantify how safely, affordably, and reliably residents—especially in equity-priority areas, and including youth, seniors, and people with disabilities—can walk, roll, bike, and ride transit to reach daily needs. The metrics emphasize outcomes people experience and can be disaggregated by geography and demographic groups to reveal and close equity gaps.

Agencies can use metrics like these to set baselines, adopt equity‑weighted targets, and link planning, project selection, design, operations, and maintenance to measurable outcomes. Public dashboards and routine reporting make tradeoffs transparent, reward investments that move more people safely and sustainably, and ensure ongoing accountability for safety, climate, health, and opportunity gains.

Overall

  1. Safety risk exposure: Killed or seriously injured (KSI) per 100,000 residents—especially for people walking and biking—in equity areas; share of high-injury network covered and fixes delivered.
  2. Access to opportunities: Share of residents who can reach X jobs/clinics/grocers/schools within 15 minutes by transit/walk/bike; break out by youth and seniors; compare equity areas to regional averages.
  3. Affordability burden: Share of household income spent on transportation; fare-to-wage ratio for typical trips; enrollment and coverage of reduced-fare programs.
  4. Environmental burden and co-benefits: Population-weighted exposure to PM2.5/NO2/traffic noise and proximity to high-volume roadways; per-capita GHG and changes attributable to service improvements.

Walking and using a wheelchair

  1. Safe and convenient crossings: Marked crossing density/spacing; average wait to cross at signals and unsignalized locations; percent of crossings with high-visibility markings, refuge islands, and LPIs. Targets: average pedestrian signal delay ≤30 s at arterials; crossing spacing ≤120 m in centers.
  2. ADA accessibility at corners: Percent of corners with compliant curb ramps and detectable warnings.
  3. Exposure and conflicts along the path: Percent of sidewalk length adjacent to traffic ≥30 mph without a buffer; driveway conflicts per km on pedestrian-priority corridors.
  4. Safety outcomes: Pedestrian KSI per million walk-miles; near-miss reports per 1,000 trips.
  5. Comfort, amenities, and lighting: Percent of walk-km with shade/trees; benches per km; drinking water availability; percent of corridors meeting pedestrian-scale illumination standards.
  6. Access and directness: Cumulative opportunities within a 15-minute walk (jobs/schools/parks); average circuity ratio vs straight-line for typical walk trips.

Bicycle travel

  1. Low-stress access, connectivity, and wayfinding: Percent of residents/jobs within 1,000 ft of all-ages-and-abilities (AAA) bikeways; percent of key origin–destination pairs connected via LTS 1–2 network; percent of network with continuous signage and destination/time information.
  2. Bikeway protection and intersection design: Percent of bikeway-km that are physically protected vs painted; percent of bikeway junctions with protection (setbacks, signals, refuge/islands).
  3. Stress, conflicts, and terrain exposure: Share of typical bike trips requiring LTS 3–4 segments; driveway and bus stop conflicts per bikeway-km; percent of network-km with grades >5% (or elevation gain per typical trip).
  4. Surface condition and maintenance: Percent of bikeway-km with PCI ≥ good; sweeping frequency and debris clearance; snow/ice clearance compliance time.
  5. Travel time reliability: 80th/50th percentile bike travel time ratio on key corridors.
  6. Safety outcomes: Bike KSI per million bike-miles; crash rate at protected vs unprotected segments.

Bicycle parking

  1. Short-term supply and proximity: Percent of storefronts and key destinations with properly placed inverted-U racks; racks within 50 ft (≈30 m) of main entrances. Suggested targets: ≥2 rack spaces per storefront; racks within 30 m at ≥90% of destinations.
  2. Short-term utilization and turnover: Peak-hour utilization (%) and average daily turnover per rack; maintain peak utilization in a 50–85% range.
  3. Long-term supply and equity coverage: Secure spaces per 10 employees and per 10 multifamily units; percent of buildings meeting code/targets; coverage in priority/equity areas vs citywide. Suggested targets: ≥1 secure space per 10 employees; ≥1 per dwelling unit in new multifamily.
  4. Long-term security and theft: Percent of spaces in access-controlled rooms/cages/lockers with CCTV; thefts per 100 spaces/year. Suggested target: 100% access-controlled.
  5. End-of-trip amenities: Percent of major employment sites providing showers, lockers, repair stands, and e-bike charging.
  6. Micromobility parking management: Designated corral density (per km²) and compliance (share of devices parked in corrals).

Transit service

  1. Service availability and proximity: Percent of households within a 10–15 minute walk (≤0.25 mi) of frequent transit (≤10–15 minute headways); average walk time to a stop with ≥4 buses/hour.
  2. Frequency and span of service: Headways and hours of operation by time of day/day of week to equity communities, airports, job centers, schools, neighboring towns, regional recreation/trailheads, and regional/statewide transit; percent of the day with ≤10–15 minute headways.
  3. Person-throughput: People moved per hour by corridor and mode (peak/off-peak), emphasizing people-moving capacity over vehicle throughput.
  4. Universal/ADA accessibility: Percent of stops/stations with compliant boarding, curb ramps, tactile surfaces; shelters with benches; elevator/escalator uptime; percent of trips that are step-free.
  5. Crowding and comfort: Peak load factor; percent of trips exceeding agency crowding standards on routes serving equity areas; seat availability by time of day.
  6. Travel time and reliability: Median and 80th/95th percentile travel times (or buffer time index) for representative trips; on-time performance by route in equity areas.

References

NACTO (2019). Don’t Give Up at the Intersection: Designing All Ages & Abilities Intersections. National Association of City Transportation Officials. https://nacto.org/publication/dont-give-up-at-the-intersection/

FHWA (2019). Bikeway Selection Guide. Federal Highway Administration. https://safety.fhwa.dot.gov/ped_bike/tools_solve/docs/fhwasa18077.pdf

Mekuria, M. C., Furth, P. G., & Nixon, H. (2012). Low-Stress Bicycling and Network Connectivity. Mineta Transportation Institute. https://transweb.sjsu.edu/research/low-stress-bicycling-and-network-connectivity

NACTO (2016). Transit Street Design Guide. National Association of City Transportation Officials. https://nacto.org/publication/transit-street-design-guide/

TRB (2013). Transit Capacity and Quality of Service Manual, Third Edition. Transportation Research Board. https://www.trb.org/Main/Blurbs/169437.aspx

U.S. EPA (2023). EJSCREEN Technical Documentation. U.S. Environmental Protection Agency. https://www.epa.gov/ejscreen/technical-documentation-ejscreen

U.S. DOJ (2010). 2010 ADA Standards for Accessible Design. U.S. Department of Justice. https://www.ada.gov/2010ADAstandards_index.htm

USDOT (2022). National Roadway Safety Strategy. U.S. Department of Transportation. https://www.transportation.gov/NRSS

Vision Zero Network (2018). Core Elements for Vision Zero Communities. Vision Zero Network. https://visionzeronetwork.org/resources/core-elements/

Litman, T. (2024). Evaluating Transportation Equity: Guidance for Incorporating Distributional Impacts in Transport Planning. Victoria Transport Policy Institute. https://www.vtpi.org/equity.pdf

Owen, A., & Levinson, D. (2015). Access Across America: Transit 2015. University of Minnesota Accessibility Observatory. https://access.umn.edu/publications/annual-reports

WHO (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. https://www.who.int/publications/i/item/9789240034228

NACTO (2017). Designing for All Ages & Abilities: Contextual Guidance for High-Comfort Bicycle Facilities. National Association of City Transportation Officials. https://nacto.org/publication/urban-bikeway-design-guide/designing-ages-abilities/

FHWA (2023). Proven Safety Countermeasures. Federal Highway Administration. https://safety.fhwa.dot.gov/provencountermeasures/

ITDP (2017). The TOD Standard, 3rd Edition. Institute for Transportation and Development Policy. https://www.itdp.org/publication/the-tod-standard/

Categories
Uncategorized

Where “level of service” comes from and what we need it for now

“Level of service” (LOS) is one of the most enduring ideas in public-sector management. It started as a technical grading system for traffic flow and evolved into a broader way governments define what residents can expect from public services.

Along the way, it shaped zoning decisions, capital budgets, environmental reviews, and day-to-day operations—for better and worse.

Where LOS began

In 1965 the Highway Capacity Manual, produced under the Transportation Research Board, introduced LOS as a way to describe how roads and intersections operate.

Engineers translated speed, density, and delay into A through F grades that non specialists could grasp. Fast and free flowing traffic tended to earn higher grades, while slow and congested conditions earned lower ones. The report card format moved quickly from manuals to meetings because it made choices visible to elected officials and the public.

Cities and counties adopted LOS in their plans and codes, often as part of development review. Many jurisdictions set minimum standards for intersections or corridors and asked developers to fund mitigations when new projects pushed grades below the threshold. Florida’s concurrency era became a well known example.

LOS also shaped environmental review practice. In California, analysts long treated a drop in intersection LOS as a significant impact under CEQA, which led to capacity oriented mitigations. Public works and transportation departments used LOS to size roadways, choose signal control, and justify capital projects. In many places it became the default performance target for surface transportation.

Driving our car problems

By the 2000s, a consensus in academic and advocacy communities emerged that LOS for vehicles delay wasn’t working.

There were lines of critique:

Expanding capacity to “preserve” LOS often filled quickly, pushing agencies into expensive widening cycles with limited long-term congestion relief.

Designing for higher vehicle LOS typically produced wider, faster corridors that degraded safety for people walking and biking and undermined main-street vitality.

And a car-delay metric sidelined transit, walking, and biking, disproportionately burdening people without reliable access to a car.

Calls for moving away from vehicle delay LOS grew.

Towards fuller transportation management

Gradual reform began. Slowly, agencies started to add different measures—those for people on foot, on bikes, and on transit.

Planners tracked person throughput rather than only vehicle throughput, as well as complete streets commitments, low stress bike networks, sidewalk continuity, crossing frequency, and multimodal mitigations in development review.

Transit targets emerged for frequency, span, reliability, crowding, and access to frequent routes.

Measurement emerged for numbers of jobs, schools, and services residents could reach within a set time by different modes.

Freight and curb programs set expectations for travel time, delivery windows, and turnover.

Vision zero emerged, the target for zero deaths or serious injuries.

Climate and health objectives came to sit within LOS style frameworks, including VMT reduction, mode share, and exposure to air and noise pollution near major roads and freight lines.

Agencies disaggregated performance by race, income, age, disability, and place to see whether every neighborhood meets the floor standard and whether gaps are closing year over year.

In 2020, California passed SB 743, which shifted transportation analysis under CEQA from intersection delay to vehicle miles traveled.

Next, Federal performance management under MAP 21 and the FAST Act emphasized reliability, safety, and asset condition. The center of gravity moved from delay to outcomes that people experience.

Today, LOS for vehicle delay is still with us. The changes haven’t reached every agency, and others still use the metric but more narrowly, like for freight routes, evacuation corridors, and certain intersections.

Others continue to use it alongside other measures. Corridor planning now puts vehicle LOS next to safety, reliability, transit travel time, and access, and in many cases the people centered measures are decisive.

Operations teams monitor real time reliability, incident clearance time, and headway adherence. Equity reporting has matured as well.

Most agencies now use a dashboard rather than a single grade, and they tune targets to context. A downtown main street needs different goals than a neighborhood collector or a heavy industrial corridor.

Overall though, the importance of vehicle delay LOS has declined as its shortcomings have become more widely understood, and it is being increasingly replaced by other measures that deliver better results.

Good service now means safe, reliable, affordable, and accessible mobility for people, not only fast movement for cars.

It’s also understood that the benefits, costs, and issues around transportation are inextricably to linked land use, housing, and other disciplines and departments.

And furthermore, people don’t need transportation for transportation’s sake—it is ultimately to access opportunities and resolve needs for wellbeing, of which strategies besides transportation are available.

Beyond transportation

Meanwhile, local governments have borrowed the LOS idea for services beyond transportation.

Fire and EMS agencies published response time and coverage goals that guide station siting and staffing.

Public works tracked snow clearance time, pothole repair, street sweeping cycles, and signal uptime.

Parks departments measured access to green space and program availability. Utilities set standards for water pressure, outage duration, sewer overflow prevention, and flood risk tolerances.

Customer service teams set response and resolution times for 311.

Airports and terminals managed comfort and processing time in key areas.

In each case leaders defined the service, measured delivery, and managed to a public standard.

A language for executives

LOS has also become a language of executives. Mayors, city managers, and county administrators use it to compare priorities across departments and to focus leadership attention.

As such, it has lets transportation proposals sit at the same table as water, parks, housing, and public safety.

Departments present LOS targets with timelines and budgets, and executives see tradeoffs, assign resources, and hold teams accountable.

Chief financial officers use it to link funding to promised service levels.

Budget offices use cross-agency scorecards to coordinate action, for example faster bus travel times that require both transit priority and signal timing, or safer corridors that require design changes, targeted enforcement, and maintenance.

LOS has led to a common language that makes technical management visible at the highest levels, where decisions are made that span multiple disciplines and power exists to create shared ownership.

Looking ahead

Advocates of equitable transportation can find LOS to be a sore spot. It is one of the drivers of historic and still ongoing widespread public policies and investments that lead to, and lock in, destructive car-centric planning. So there can be an understandable impulse to write LOS off.

But its impact and power is the point. The idea of LOS is performance measurement. Its proposition is to define the service, measure it in a transparent way, and manage to a public standard.

And so what began as a traffic report card using a lot of assumptions that have needed to be updated has grown into a practice of performance management to describe what government will deliver. It has become a language that helps executives set priorities, align budgets, and give sustained attention to the work that matters.

A question for policymakers looking ahead: What are the services should we be providing now, and what are the expectations and standards that we should be committed to?

References

Litman, Todd (2024). Evaluating Transportation Equity. Victoria Transport Policy Institute. https://www.vtpi.org/equity.pdf

California Governor’s Office of Planning and Research (2020). Technical Advisory on Evaluating Transportation Impacts in CEQA. California Governor’s Office of Planning and Research. https://opr.ca.gov/ceqa/updates/sb-743/guidance/

California Natural Resources Agency (2018). CEQA Guidelines Update implementing SB 743. California Natural Resources Agency. https://resources.ca.gov/ceqa

Federal Highway Administration (2016). Guidebook for Developing Pedestrian and Bicycle Performance Measures. U.S. Department of Transportation Federal Highway Administration. https://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/performance_measures_guidebook/

Transportation Research Board (2016). Highway Capacity Manual 6th Edition A Guide for Multimodal Mobility Analysis. Transportation Research Board. https://hcm.trb.org

Florida Department of Transportation (2013). Quality Level of Service Handbook. Florida Department of Transportation. https://www.fdot.gov/planning/systems/programs/sm/los/

National Association of City Transportation Officials (2013). Urban Street Design Guide.

National Association of City Transportation Officials. https://nacto.org/publication/urban-street-design-guide/

California State Legislature (2013). Senate Bill 743 Environmental Quality. California Legislative Information. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB743

Categories
Uncategorized

If you like historic preservation, you’ll love good transit, bicycleability, and 15-minute neighborhoods

Early American urban life thrived on lively streetcar corridors, ubiquitous bicycles moving safely on slow, shared streets, and neighborhoods where most daily needs sat within a short walk or ride.

The streetcar era knit cities together in fine-grained patterns of corner groceries, upstairs flats, and neighborhood theaters—places where most needs were within a short walk or ride.

Even before streetcars, the “walking city” and the 1890s bicycle boom made proximity the default. Cars existed only at the margins, so streets functioned as public rooms: shared, social, and slow.

That living heritage—mobility, proximity, and sociable streets—is what made those places humane and connected.

Yet in practice, preservation today often narrows its focus to façades. Landmarks commissions are good at safeguarding terra-cotta, sash windows, and rooflines, but the living urban fabric that made those buildings meaningful—frequent transit, safe cycling, mixed-use proximity—rarely enter the brief.

We end up with postcard streetscapes where it’s hard to catch a bus, risky to ride a bike, and illegal to add the kind of small homes and corner shops those streets were built to serve. That’s not true preservation; it’s aesthetic freeze-drying.

A fuller effort to preserve our towns would widen the lens from ornament to organization—from how buildings look to how people live and move among them. It would treat mobility and proximity as heritage values. The original context of many “historic” districts was a network of transit lines, narrow lanes that tamed speeds, minimal off-street parking, and a jumble of uses that kept daily life close. Preserving that context means reviving it: frequent buses and trains with priority on main streets, protected bike networks, traffic-calmed blocks, and zoning that again welcomes small shops, flats, and missing-middle homes.

Crucially, it would also acknowledge how landmarking is sometimes wielded as a cudgel to block this very heritage. Claims that bike lanes, bus lanes, or modest infill are “out of character” can freeze a district into the least historical version of itself: car-dominated, parking-laden, and functionally exclusive. Midcentury motoring norms—wide lanes, abundant parking, high speeds—are not historic features of 19th- or early 20th-century neighborhoods; they’re intrusions. Elevating them over transit, cycling, and proximity erases the social history that made these places work.

Historian Peter Norton’s work helps explain how we got here. In Fighting Traffic, he shows how “motordom” in the 1920s reframed streets from shared civic spaces into motor corridors, even inventing “jaywalking” to blame pedestrians for car violence. In Autonorama, he chronicles how dazzling promises of car-centered futures kept us doubling down on a system that undermines safety, equity, and the very urbanity preservationists celebrate. Norton’s lesson isn’t anti-progress—it’s about recovering the freedom and dignity people once had to move without a car, and recognizing that our built inheritance is as much about circulation and sociability as it is about style.

A modern and appropriate approach to historic preservation would therefore put good transit, bicycleability, and 15-minute neighborhoods at the center:

  • Treat proximity as heritage: legalize the traditional mix—corner stores, upstairs apartments, and small homes—so daily needs are within a short walk or ride.
  • Protect historic street functions: prioritize transit on legacy corridors, narrow overly wide lanes, calm traffic, and remove parking mandates that never belonged in pre-automobile places.
  • Build complete bike networks: protected lanes that connect homes to schools, shops, and stations, restoring the everyday cycling common before car dominance.
  • Make transit frequent and dignified: all-day frequency, reliable operations, and comfortable stops—because a streetcar-era city without good transit is a stage set, not a community.
  • Embrace adaptive reuse with access: pair façade conservation with code paths that add homes and active ground floors without sacrificing safety.
  • Measure what matters: evaluate preservation impacts on access, safety, emissions, and affordability, not just appearance.

This is not nostalgia; it’s adaptation. In a warming climate, the most resilient “historic district” is one where a family can meet most needs without a car, where buses glide past congestion, where riding a bike is uneventful, and where shorter trips mean lower emissions and cooler streets. These are the conditions that once made American towns hum—and they are far more consequential than whether a replacement window mimics an old muntin pattern.

If you love historic preservation, consider loving what made those places livable in the first place. Save the cornices, yes—but save the corner store, the bus that comes every eight minutes, the safe bike route to school, and the right to live near what you need. That’s how we preserve history we can still inhabit.

Categories
Uncategorized

Home rule in a warming world: Balancing autonomy versus avoidance

Climate change is rewriting the job of local government. Towns face floods, heat waves, wildfire smoke, drought, and stronger storms.

Home rule can help because local authority allows speed, fit, and trust.

It can also backfire when local choices block housing, push growth outward, and raise climate and infrastructure costs for everyone in the region. When towns refuse to work on shared problems together, they hurt their neighbors and invite the same harm back.

The work is to keep the agility of local action without exporting costs and risks to others.

What home rule is and why it matters now

Home rule lets a town set many of its own rules for land use, public health, infrastructure, procurement, and programs.

The details differ by state, but the idea is simple. Decisions made close to the ground can match local risks and values and can adapt as conditions change.

That proximity matters in a fast shifting climate. Hazards vary block by block. Tools like microgrids, cool roofs, and nature based flood control need real world pilots. People are more likely to engage with plans designed and explained by their own community.

Where local autonomy helps

The value shows up in day to day work. During heat waves, a town can extend library hours, open cooling centers, set cool roof rules, and check on seniors and residents without stable housing.

Flood prone places can map small watersheds, upgrade culverts, add street trees and rain gardens, and update setback rules in repeat loss areas.

Communities on the fire edge can strengthen defensible space, encourage ember resistant retrofits, plan neighborhood evacuations, and create clean air rooms in schools.

Municipal utilities can try demand response, rooftop solar, batteries, and resilience hubs that keep power and cooling on during outages.

Planning and zoning can steer growth to safer and already served locations and reduce exposure in floodplains and fire corridors.

This is home rule at its best. Responsive, practical, and tuned to real conditions.

The myth of local exceptionalism

Every place has real differences. A mountain town faces wildfire. A legacy industrial city faces heat islands and old pipes. A coastal village faces surge and saltwater intrusion.

Yet many communities overstate how unique their needs are. Housing markets respond to supply and demand in familiar ways.

When zoning and permitting choke homes near jobs, prices rise and workers move farther out.

Traffic fights look similar across regions even though the deeper cause of congestion is spread out growth that forces more driving for daily needs.

Infrastructure costs follow the same math everywhere. Low density leapfrog growth needs more road miles, pipe miles, and emergency coverage per household.

Climate physics are universal. More pavement means more heat. Building in flood zones and fire corridors raises loss. Longer commutes raise emissions.

Because the patterns rhyme, proven playbooks travel well: Accessory dwelling units with clear design rules. Small multifamily near transit with form standards that fit context. Green infrastructure guided by flood and heat maps. Resilience hubs in libraries and schools. Tree canopy targets focused on the hottest blocks.

Local distinctiveness should shape how we apply these tools, not whether we apply them at all. Too often the claim that a place is uniquely special becomes a way to avoid action to create crucial housing, cut emissions, and build resilience.

How refusing to work together harms neighbors—and causes them to harm you

Local land use does not stop at the town line. When one town takes the jobs and blocks homes, workers must live farther away and drive through other towns. Commutes lengthen on the same regional roads. Emissions rise across the whole air basin.

The costs show up in traffic, noise, and pollution for neighbors who had no vote on the original decision. Budgets feel the strain as well. Sprawl forces more miles of roads and pipes and spreads police, fire, and school service areas thin. The bill arrives in higher state aid needs, regional taxes, and utility rates paid by everyone.

Risk spreads too. Pushing growth outward often pushes it into hotter exurban zones, floodplains, and fire prone hills. Disasters do not honor jurisdictional maps. Evacuations, smoke days, and water rescues ripple through mutual aid networks. Insurance markets price regional losses and can raise premiums even for towns that planned well.

The harms compound in equity. When towns chase revenue rich commercial uses while resisting homes, they bid against each other, drive up rents, and still end up short on workforce housing. Workers travel farther, spend more on transportation, and lose time with family. Access to schools, parks, and jobs becomes more unequal.

Going it alone feels protective in the short run but it can mulitpky shared costs and shared risks for the whole region.

Recognizing defensive exceptionalism

There are warning signs when a home rule claim masks avoidance rather than stewardship:

Endless hearings and bespoke studies for projects that meet adopted code.

Shifting objections that move from traffic to neighborhood character to school capacity without a workable plan for any of them.

Absolute bans on multifamily homes, shelters, or renewables where performance standards could manage real impacts.

Fast tracking low wage commercial projects while slow walking homes for the same workforce.

Genuine uniqueness exists and deserves careful standards and siting. It does not justify a blanket refusal to add homes or share regional responsibilities.

The trap of over-indexing on historic preservation

Historic preservation can be a public good. It protects craft, keeps memory alive, and saves embodied carbon through reuse. It can also become a cudgel that blocks needed homes and climate upgrades when harms outweigh benefits.

But preservation is selective: streetcar cities thrived without cars; the same places sit atop stolen Indigenous land; later, redlining and Jim Crow shaped neighborhoods. We cannot comprehensively preserve our history by cementing facades.

History matters, yet towns live by change. On a warming planet, the most urgent preservation is a livable habitat—safe from heat, flood, fire, and bad air. If we miss that, nothing else we save will endure.

Towns must adapt. They need to allow middle housing in walkable areas, and enable retrofits, solar, and electrification. In doing so, the ought to be explicit about goals and opportunity costs of landmarking—what important principles guides preservation, and at what price in homes, emissions, risk, and equity? Count homes foregone, emissions added, and who pays.

Landmarking needs to yield to developing communities that are designed to live in, allowing compatible additions, missing-middle infill, and climate upgrades by right. It should value adaptive reuse, step back added floors, and pair limits with tools like TDRs and grants. In sum, honoring memory without immobilizing it so history has a future to live in.

Where higher level orchestration is needed

This is not an argument for stripping local agency. It is a call to pair local action with clear and fair regional and state frameworks for outcomes that are shared.

States can set fair share housing targets by region and by municipality and require zoning that allows those homes near jobs and transit. They can back those targets with steady accountability. Climate aligned guardrails can legalize accessory dwellings and missing middle homes in walkable areas while keeping new growth out of the most fire and flood exposed zones.

Public money should follow outcomes. Transportation and infrastructure funds should reward places that align zoning with transit, reduce driving, permit homes in job rich areas, and plan for risk. Subsidies should not extend pipes and roads into the riskiest sprawl.

Regional planning bodies can align transportation, housing, and climate with shared data, scenario modeling, and performance measures for equity and emissions.

Statewide building and energy codes can set a strong floor for efficiency and resilience while allowing vetted local stretch codes so innovators can lead and others can follow with confidence. State produced maps for flood, heat, smoke, wildfire risk, and neighborhood level emissions and access can anchor local choices in shared facts.

Subsidiarity as a guide

Use subsidiarity to decide who does what. Make decisions at the lowest level that can handle them well and lift decisions to higher levels when impacts are regional or statewide.

Local governments are the right place for emergency response, site specific risk mitigation, tree canopy and street design, local mobility, community engagement, and the design of infill that fits context.

States and regions are the right place for housing supply targets and fair share zoning, major transit and highway investments, siting rules that keep growth out of the highest risk areas, regional growth strategies, and utility and insurance regulation. Shared data standards and open permitting work best when built once and used by all.

Policy ideas that respect difference without indulging exceptionalism

The balance is practical. Set statewide rules that legalize modest, climate friendly homes in walkable and transit served places, then let towns shape form and design to fit local character.

Offer preapproved building plans that cut permitting timelines and reduce soft costs.

Draw no build zones where risk is extreme and build better zones where services already exist, and pair limits with buyouts and transfer of development rights so owners are treated fairly.

Align funding with climate and housing goals by tying transportation and water or sewer money to steady progress on homes in safer and lower driving locations.

Use revenue sharing to reduce the incentive to chase commercial tax base while resisting homes.

Build capacity for small towns with technical help, shared climate staff across clusters of places, and statewide procurement tools so smaller communities can move as fast as big cities.

Publish simple dashboards that track homes permitted against targets, driving per person, risk adjusted growth, and infrastructure cost per new household.

Create safe harbors for good faith localism so towns that meet housing and climate thresholds keep wide design discretion while state backstops apply where progress lags.

How to tell the difference

Here are some questions to help discern a do it our way problem from a collective action problem:

Would delaying or shrinking this project shift costs or risks to nearby towns?

Are the benefits and harms mostly inside our borders or mostly regional?

If every town behaved as we plan to, would the region be better off or worse off?

Are we blocking homes or climate tools that peer communities use while offering no workable alternative?

Are we invoking local character when the real issue is supply, access, emissions, or risk?

Do our residents depend on regional roads, schools, hospitals, water, and job markets that our choices make more expensive or less reliable?

Could a shared standard, shared data, or shared funding approach solve this more fairly and faster than a town by town fight?

If we say no, who pays and how do they pay in time, money, health, or safety?

If we say yes with conditions, which conditions actually mitigate real impacts rather than simply stop change?

What evidence would change our minds, and are we ready to act on it?

The bottom line

Climate change pushes decisions down to where impacts are felt and up to where externalities can be managed.

Towns need the agility of home rule to protect residents and to innovate.

Regions and states need the authority to ensure that essentials like housing, emissions cuts, and risk aware growth are produced at the scale the moment demands. Claims of local specialness cannot become a veto on shared solutions.

When towns refuse to work together on shared problems, they harm one another and raise costs for everyone.

The goal is a coherent system where local creativity thrives within clear and fair guardrails that keep us from undermining our neighbors.

Categories
Uncategorized

Good parking: What we know now about effective policy and management


Over the past two decades, parking policy has evolved from a supply-maximizing, one-size-fits-all practice to an outcome-driven system that advances climate goals, public health, equity, and local vitality.

What we know now: Managing parking and mobility more deliberately—which includes eliminating minimums and pricing for availability to sharing, unbundling, and dynamic curb management—helps cities use scarce public space more fairly and efficiently, supports safer, healthier streets, and lowers housing and business costs, all while reducingt driving and emissions.

What began as pilots and academic critiques is now mainstream policy and practice across North America and globally.

How the field has evolved

From mandates to management: Cities are replacing minimum parking requirements with performance-based tools, shared supply, and right-sizing.

From traffic to climate, health, and equity: Research links excess parking to higher VMT/GHGs, air pollution, heat, stormwater impacts, injuries, and housing cost burdens; reforms now center equity and public health benefits.

From static supply to dynamic systems: Demand-responsive pricing, occupancy targets (roughly 70–85%), transparent adjustments, and data-informed enforcement are standard in leading programs.

From lots to the curb: The curb is dynamically allocated among loading, transit, micromobility, pick-up/drop-off, and short-stay parking, with pricing and time-slicing to match demand and city goals.

From pilots to policy: Early demonstrations (e.g., SFpark) paved the way for broad local reforms and state-level actions linking parking to climate and housing goals.

Key concepts

Minimums vs. maximums and caps: Minimum requirements induce excess supply; many places now eliminate minimums and, in some contexts, set caps.

Performance pricing: Adjust rates to meet occupancy targets, cutting cruising and emissions while improving availability.

Unbundling and cash-out: Sell/lease parking separately and offer employees the cash value of parking; both reduce car ownership and VMT.

Parking Benefit Districts (PBDs): Reinvest a portion of revenue locally to build support and deliver visible neighborhood improvements.

Shared/district parking: Pool supply across uses and time periods to shrink total stalls and avoid new construction.

Lifecycle impacts: Account for embodied and operational carbon of parking structures in capital decisions.

Equity-centered design: Pair pricing with income-based discounts, accessible payment options, targeted permits, and safer street design.

Curbside management: Digitize inventory, standardize use categories, and price high-demand loading and short stays.

Manage by outcomes: Track occupancy, turnover, compliance, mode share, VMT/GHG, safety, and local economic indicators—not just stall counts.

Implications for policymakers

Align codes with climate and housing: Repeal or reduce minimums, allow shared/district parking, require unbundling, and offer TDM in lieu of on-site stalls.

Enable performance pricing: Authorize dynamic meter/permit rates, curb-use fees, and special zones; require transparent adjustment protocols and reporting.

Put people and transit first: Prioritize safety, accessibility, transit reliability, and freight efficiency in curb allocations.

Center equity: Mandate income-based discounts, accessible payment options, and community oversight; avoid exemptions that undermine outcomes.

Reinvest locally: Establish PBDs to fund sidewalks, lighting, trees, transit passes, and safety improvements.

Modernize enforcement: Update legal authority, due process, and technology to support high compliance and fair treatment.

Measure and publish: Require regular reporting on availability, turnover, compliance, revenue/reinvestment, and climate/health co-benefits.

Implications for parking and mobility design professionals

Start with outcomes: Set clear targets (availability, GHG/VMT, safety, equity) and design pricing, permits, and curb allocations to hit them.

Replace ratios with strategies: Support elimination/reduction of minimums; enable shared/district parking, TDM alternatives, and unbundling.

Price to manage: Implement demand-responsive pricing with simple rate bands, occupancy targets, and routine adjustments.

Pair pricing with equity: Offer low-income discounts, neighborhood caps, mobility credits, and underbanked payment options; reinvest locally via PBDs.

Make the curb work: Segment, time-slice, and price curb uses; protect transit and bike lanes; use clear signage and digital permits.

Quantify carbon and cost: Include embodied/operational carbon and lifecycle costs in alternatives; prioritize retrofit/shared use over new builds.

Build interoperable systems: Choose tech that supports dynamic pricing, compliance, open data (where appropriate), privacy, and integrations (LPR, payments, sensors).

Pilot, evaluate, iterate: Start small, publish results (availability, turnover, cruising, sales tax, emissions), and scale what works.

How policymakers and parking/mobility design professionals can work together

Co-create goals and guardrails: Policymakers set outcomes and equity standards; practitioners translate them into program design and operations.

Pilot-to-policy pipeline: Practitioners run pilots and evaluations; policymakers codify and scale effective practices.

Align reinvestment: Agree on PBD frameworks that return a portion of revenue to affected neighborhoods; communicate early and often.

Operationalize equity: Jointly design discounts, accessible payment options, and targeted permits; audit outcomes and adjust.

Coordinate the curb: Maintain shared, digital curb inventories and standard use categories; plan time-slicing across modes and freight.

Govern continuous improvement: Establish processes for routine price adjustments, allocation changes, and tech upgrades with community representation.

References

PubMed Central (2024). Parking and Public Health. National Library of Medicine, PMC. https://pmc.ncbi.nlm.nih.gov/articles/PMC11631998/

Institute for Transportation and Development Policy (2022). To Tackle Climate Change, Cities Need to Rethink Parking. ITDP. https://itdp.org/2022/09/20/to-tackle-climate-change-cities-need-to-rethink-parking/

Institute for Transportation and Development Policy (2021). On-Street Parking Management: An International Toolkit. ITDP. https://www.itdp.org/publication/on-street-parking-management-international-toolkit/

American Planning Association (2019). Policy Guide on Parking and Mobility. APA. https://www.planning.org/policy/guides/parkingmobility/

Donald Shoup (ed.) (2018). Parking and the City. Routledge. https://www.routledge.com/Parking-and-the-City/Shoup/p/book/9781138494969

International Transport Forum, OECD (2018). The Shared-Use City: Managing the Curb. ITF-OECD. https://www.itf-oecd.org/shared-use-city-managing-curb

Alan Durning (2018). Parking? Lots! Sightline Institute. https://www.sightline.org/series/parking-lots/

Todd Litman (2016). Parking Management Best Practices (2nd ed.). Routledge. https://www.routledge.com/Parking-Management-Best-Practices/Litman/p/book/9781138202410

Mikhail V. Chester et al. (2015). Parking infrastructure: energy, emissions, and automobile life-cycle environmental externalities. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/10/8/084027

Richard W. Willson (2015). Parking Management for Smart Growth. Island Press. https://islandpress.org/books/parking-management-smart-growth

Paul Barter (2015). Parking Management: A Contribution Towards Sustainable Urban Transport. GIZ SUTP. https://sutp.org/publications/parking-management-a-contribution-towards-sustainable-urban-transport/

San Francisco Municipal Transportation Agency (2014). SFpark Pilot Project Evaluation. SFMTA. https://sfpark.org/resources/evaluation/
Michael Manville (2014). Parking Requirements and Housing Affordability. Access Magazine. https://www.accessmagazine.org/fall-2014/parking-requirements-and-housing-affordability/

Michael Manville (2013). Parking Requirements and Housing Development: Regulation and Reform in Los Angeles. Journal of the American Planning Association. https://www.tandfonline.com/doi/abs/10.1080/01944363.2013.785346

Richard W. Willson (2013). Parking Reform Made Easy. Island Press. https://islandpress.org/books/parking-reform-made-easy

Donald Shoup (2011). The High Cost of Free Parking. Planners Press/APA. https://shoup.bol.ucla.edu/the-high-cost-of-free-parking/

U.S. Environmental Protection Agency (2006). Parking Spaces/Community Places: Finding the Balance through Smart Growth Solutions. US EPA. https://www.epa.gov/smartgrowth/parking-spacescommunity-places-finding-balance-through-smart-growth-solutions

Categories
Uncategorized

Key climate solutions for communities

To unlock new climate progress, apply the power of local communities. Communities are key to most of the climate action needed as well as types of action that can make daily life safer, healthier, and more affordable for everyone.

What follows is a list of community‑oriented solutions that:

  • Are key areas of climate action overall;
  • Offer some of the most effective climate opportunities for communities;
  • Fall within local authority and influence, representing unique power by communities; and
  • Advance equity and public wellbeing, which can lead the way to support for doing more.

Estimates reflect typical North American urban conditions and results vary by context.

#1. Make it legal and attractive to put housing near destinations, and amenities near homes: Reform zoning for more homes in job‑ and transit‑rich areas, permit “missing middle” housing and accessory units, reduce minimum parking, enable small mixed‑use corner stores, clinics, and childcare, and streamline approvals for affordability and inclusion. 

Infill homes lower household VMT 20–40% versus sprawl; shifting 10–20% of growth to infill can cut regional on‑road emissions ~2–6% over a decade, while multifamily/attached homes use 10–30% less energy per unit. If 40%+ of new housing is transit‑oriented, metro transport emissions can fall 10–20% by 2040, with shorter trips, lower costs, and inclusionary policies reducing displacement pressures.

#2. Neutralize the threat of being killed or seriously injured by a driver: Design streets to self‑enforce safe speeds, build connected, protected bike networks, daylight intersections, prioritize pedestrians at crossings, and target high‑injury corridors with data‑driven design, paired with fair enforcement and universal access to safe mobility. 

Such programs typically cut VMT 3–10% citywide within 5–10 years (about 2–8% on‑road CO2e, or 1–4% of total community emissions), with sustained mode shift reducing per‑capita transport emissions 20–50% over 10–20 years. Fewer severe crashes, reliable low‑cost mobility during fuel price spikes or outages, and better access to jobs and services especially benefit low‑income residents, youth, seniors, and people with disabilities.

#3. Deliver high‑quality walking, bicycling, and public transit for everyone: Build safe, direct bike routes and frequent, reliable transit with all‑door boarding, bus lanes, and integrated fares, and complete trips with wayfinding, lighting, benches, shade, and safe crossings. Network upgrades and service improvements reduce corridor VMT 5–15% and citywide 3–10%, and over time enable car‑light lifestyles that can halve household transport emissions. Redundant, multimodal networks also keep people moving during storms and outages while cutting mobility costs and improving access to essentials.

#4. Create abundant places to meet, interact, and belong outside of commerce: Invest in parks, plazas, libraries, greenways, and car‑free streets with free programming, designed for comfort—trees, water, seating, restrooms—and cultural expression. 

Nearby amenities reduce short car trips (often 0.5–2% VMT citywide) and shaded, tree‑rich public spaces lower cooling demand for adjacent buildings. Social infrastructure strengthens mutual aid, and shade and cooling reduce heat risk while free programming expands wellbeing without raising household costs.

#5. Restore and steward nature in the city with climate‑resilient landscaping and urban forestry:  Install bioswales, rain gardens, permeable pavements, and green roofs; landscape with native, drought‑tolerant species; expand and equitably distribute tree canopy; and restore wetlands, riparian corridors, dunes, and living shorelines. 

Shade and evapotranspiration cut cooling loads 5–30% for shaded buildings (roughly 0.05–0.3 tCO2e per home per year), while each new street tree sequesters 10–25 kg CO2 annually; 100,000 trees store 1–2.5 ktCO2e per year and avoid more via energy savings. Citywide canopy gains of 10 percentage points can reduce peak electricity demand 2–5%, while bioswales and rain gardens reduce flooding and heat in historically underserved neighborhoods.

#6. Grow local, plant‑rich food for health, climate, and resilience: Support community gardens, urban farms, edible landscaping, school gardens, greenhouses and rooftop farms; expand farmers markets and CSAs with SNAP matching; prioritize culturally appropriate crops and cut food waste. 

Plant‑rich diets reduce 0.5–1.6 tCO2e per person per year, while shorter cold chains for local produce trim 10–50 kg per person annually and compost‑amended soils store additional carbon. These measures increase food security, lower food bills, build community cohesion, and create local jobs and skills.

#7. Turn waste into soil with municipal composting: Provide universal organics collection (including multifamily) and business service, convenient drop‑offs, clear bin standards, and edible food recovery, and apply finished compost in parks, street trees, and urban agriculture. 

Diverting 1 t of food scraps from landfill avoids 0.2–0.6 tCO2e; with 75% diversion, communities avoid 20–80 kg CO2e per person annually, and compost use adds soil carbon and displaces synthetic fertilizer, totaling 40–120 kg per person per year. Programs create local jobs, improve soils that retain water, support urban food, and reduce odors and pests near facilities often sited in low‑income areas.

#8. Create systems for water conservation and efficiency: Offer instant‑rebate upgrades for high‑efficiency fixtures and appliances, smart irrigation, and turf replacement with climate‑appropriate landscaping; deploy smart meters with leak alerts; promote rainwater harvesting and safe graywater reuse; and set fair, affordability‑protected rates. 

Hot‑water efficiency (fixtures plus heat‑pump water heaters) lowers 0.6–1.8 tCO2e per home per year, while outdoor water efficiency and smart irrigation save 50–200 kg per home via the water‑energy nexus; utility‑scale leak detection and efficiency can cut water‑system electricity use 10–30%. The result is lower bills, improved drought resilience, reduced shutoff risk, and cooler neighborhoods where turf gives way to drought‑tolerant landscapes.

#9. Make buildings efficient and electric: Require and finance tight envelopes, passive cooling (shade, ventilation), and all‑electric systems; add rooftop solar and vehicle‑to‑home readiness; and harden for heat, smoke, fires, and floods. 

Typical retrofits and heat pumps save 1–3 tCO2e per home per year, heat‑pump water heaters 0.5–1.5 t, and induction 0.1–0.3 t; retrofitting 2–3% of stock annually cuts building emissions 3–7% in five years, and with grid decarbonization achieves 60–90% cuts by 2040–2050. Efficient envelopes keep homes habitable during outages, indoor air is healthier without combustion, and targeted no‑cost programs reduce energy poverty.

#10. Make electrification available for virtually everything—and beneficial to users: Provide simple, up‑front rebates for heat pumps, induction, electric water heaters, cars, e‑bikes, and chargers; implement equitable rates, managed charging, and community solar; and invest in workforce training and local contractors. 

Accelerated adoption increases cumulative 2030 reductions 10–30% versus slow rollout; each e‑bike that replaces car trips avoids ~0.3–1 tCO2e per year, and each home fuel‑switch avoids 1–3 tCO2e annually. Lower operating costs and cleaner air accrue broadly when access programs ensure renters and low‑income households benefit first.

#11. Build shared, neighborhood‑scale clean energy and resilience: Create resilience centers with solar, batteries, clean‑air rooms, and cooling/warming, link buildings via microgrids, deploy district geothermal/geoexchange networks, organize block commitments to decommission gas laterals and upgrade electrical capacity, and add curbside and hub EV charging. 

District geothermal cuts heating/cooling energy 30–60% and GHGs 40–80% today; microgrids with solar+storage reduce feeder peaks and displace diesel backup (1–3% local electricity emissions), and coordinated gas retirement plus electrification can eliminate 10–20% of total city emissions from building combustion and leakage over two decades. Shared systems keep critical services powered, lower costs for renters and small businesses, and should be prioritized in frontline neighborhoods.

#12. Keep people collectively safe from disasters, shocks, and stressors: Combine nature‑based defenses (trees, wetlands, dunes) with modern standards (cool roofs, updated codes, elevation, floodable parks), add resilient hubs, cooling centers, and clear risk communication, and plan jointly for heat, smoke, floods, and outages. 

These measures safeguard crucial clean energy and other assets that reduce emissions, contribute to a faster adoption of such systems and reduce the likelihood of maladaptations such as increased use of diesel generators, and prevent high‑emission disaster recovery and support reliable operation of clean energy systems. Clean air and cooling access, language‑inclusive alerts, and social infrastructure protect those most exposed.

#13. Tamp down air pollution across its many sources. Tackle tailpipes and smokestacks together with land use, travel‑demand fixes, and clean technology: legalize compact, mixed‑use infill near jobs and transit and pair it with transportation demand management (congestion and curb pricing, employer commute benefits, school travel plans, demand‑based parking, delivery consolidation) to shorten trips, cut VMT and idling, and curb non‑exhaust PM. Accelerate zero‑emission cars, buses, and trucks; electrify buildings; restrict the dirtiest vehicles in dense areas; and expand urban forests and cool corridors. Focus on ports, freight corridors, and overburdened neighborhoods with shore power, yard‑equipment electrification, clean‑truck rules, and fenceline monitoring. Drive down PM2.5 (including diesel black carbon and brake/tire/road dust), PM10, NOx, SO2, VOCs and air toxics (e.g., benzene, formaldehyde, 1,3‑butadiene), carbon monoxide, and methane leaks that fuel ozone—verified with continuous monitoring and transparent public reporting.

Greenhouse‑gas benefits start with light‑duty vehicles: citywide VMT reduction of 3–10% from compact development and TDM typically yields ~2–8% on‑road CO2e cuts in 5–10 years; sustained mode shift to walking, biking, and transit can lower per‑capita transport emissions 20–50% over 10–20 years; and rapid LDV electrification adds 60–90% per‑mile CO2e reductions as grids decarbonize, with each e‑bike that replaces car trips avoiding ~0.3–1 tCO2e per year. Building electrification removes on‑site combustion; each e‑bus avoids ~50–80 tCO2e annually; and medium/heavy‑duty truck electrification cuts 60–95% per‑mile CO2e, while area‑focused clean‑air zones deliver additional, localized multi‑percent transport‑sector cuts. Health gains are largest for residents near ports, warehouses, and arterials, and fewer combustion appliances indoors reduce asthma triggers.

#14. Invest in public infrastructure efficiently and price disproportionate impacts fairly: Use lifecycle cost and carbon accounting, standardized designs, open data, and fair user fees such as weight‑ and distance‑based road charges, curb and congestion pricing, demand‑based parking, and stormwater fees tied to impervious areas, all with protections for low‑income users. 

Congestion and curb pricing reduce VMT 10–20% in priced zones and 2–5% citywide, demand‑based parking trims 2–4%, and stable revenue enables sustained transit and active‑mode expansion that underpins 10–20% transport‑sector cuts over time. Pairing pricing with income‑based discounts and reinvestment delivers fairer outcomes and lowers long‑run costs.

#15. Save money and materials with sharing and lending: Launch tool, toy, sports‑gear, and baby‑gear libraries; repair cafes and fix‑it clinics; clothing swaps and reuse marketplaces; and shared equipment for schools and small businesses, in partnership with public libraries for memberships and reservations. 

Avoided production dominates the climate benefit—sharing a handful of seldom‑used items can avert 50–200 kg CO2e per person per year, with mature programs achieving 0.1–1% community‑wide cuts and broader normalization of reuse delivering 2–5% consumption‑based reductions by 2035. These programs provide low‑cost access to essentials and skills and build social networks that matter in emergencies.

#16. Offer local services and experiences as affordable alternatives to high consumption:  Invest in arts and culture passes, maker spaces, community kitchens, skill‑shares, recreation, local tourism, and nature access, and support small businesses that provide repair, care, wellness, and learning, using vouchers and memberships to ensure inclusion. 

Shifting 5% of household spend from goods to low‑carbon services and experiences reduces ~0.2–0.8 tCO2e per household per year, with scaled programs cutting community consumption‑based emissions 1–3% over time. The result is more wellbeing per dollar, local jobs and skills, and inclusive access to community life.

#17. Organize public decision‑making around measurable collective wellbeing: 

Use participatory budgeting, citizens’ assemblies, language access, evidence‑based pilots and A/B tests, transparent dashboards, and delivery‑focused timelines that give frontline communities real power, not just voice. 

Faster, smarter adoption increases cumulative reductions—programs that double deployment rates can boost 2030 impact 10–30% versus business‑as‑usual rollout—while policies reflecting lived experience deliver fairer, more durable outcomes.

#18. Make large‑scale change possible and practical: Build project pipelines and pattern books, pre‑approve typical designs, procure at scale, train a climate‑ready workforce, and start with quick‑build projects that become permanent as data show benefits.

Standardization and bulk buys lower costs and speed deployment across sectors, compounding reductions, while predictable pipelines create local careers and let small and minority‑owned firms compete and thrive.

Putting it all together

Communities that pursue these strategies in parallel can plausibly cut total emissions 35–60% by 2035 (from a 2020s baseline) while reducing heat and flood risk, improving air quality, lowering household bills, and creating good local jobs. The fastest paths pair demand reduction (land use, mobility, efficiency), rapid electrification, neighborhood‑scale clean energy, water and materials stewardship, and joyful, lower‑consumption ways of living—implemented through equitable programs that prioritize those with the greatest energy and health burdens.

Categories
Uncategorized

To electrify transportation faster, look beyond vehicles to urbanism—and electrify that

To electrify transportation, we have to swap gas cars for battery-powered ones.

Just as important is the system they run on: The location of origins and destinations. How the roads and parking work. The relative status among the different modes–including the emerging classes of hyper-efficient micromobility vehicles. What is a normal way to get something a quarter mile a way. To move across town.

Compact development multiplies electrification’s possibilities

In a more compact community, each charger, bus depot, and e-bike corral serves more trips. Such locational efficiency translates to higher utilization which lowers cost per electrified trip and accelerates payback on infrastructure. That increases returns on investment.

Shorter, more frequent trips better enable micromobility and transit. Public and workplace charging reach more users, and fleet duty cycles become more predictable. That means more people and trips served.

Dense, connected neighborhoods support an ecosystem of e-bikes, e-cargo bikes, scooters, neighborhood EVs, electric transit, shared fleets, and zero-emission delivery. That spreads benefits and reduces battery and grid needs.

Clustering buildings, parked vehicles, and loads in closer to one another enables managed charging, vehicle-to-grid (V2G) with school and transit buses, building-vehicle coordination, and neighborhood microgrids—boosting flexibility and resilience. That means more opportunities to create fuller ecosystems of electrification in which different uses support one another.

High-ridership, short-route corridors can more cost-effectively match battery duty cycles, simplify depot design, and enable reliable layover or on-route charging. When land use supports frequent service, electric buses reach lower total cost of ownership faster and deliver bigger air-quality gains. That means better transit electrification economics.

Compact form cuts miles driven, trims parking and road costs, and lowers household transportation expenses. Savings from fewer cars and less asphalt can be reinvested in charging, transit, safe streets, and building upgrades. That means savings for household and municaplities.

Denser electrification makes way for tipping points

Full electrification at scale requires existing neighborhoods and districts to to step away existing from natural gas distribution systems in big leaps. Large chunks of existing shared infrastructure needs to be retired in coordinated investments to avoid leaving a minority of ratepayers with stranded assets and impossibly high costs. The process needs a critical mass of subscribers.

Urbanism methods–compact development combined with community-scale planning–can help make transportation electrification investments play a key supportive role. By pairing infill housing and mixed-use development with transit, depot charging, e-mobility hubs, and building heat pumps, districts concentrate flexible electric load.

The payoff: Fully-electrified towns that make use of electric transportation even more.

“Avoiding” travel and “shifting” modes first increases returns

Research shows the most cost-effective way to deliver maximum electrification services for the fewest energy requirements and environmental harm is in the “avoid–shift–improve” framework (ASI).

ASI prescribes avoiding unnecessary demand for a service in the first place; then shifting remaining demand to inherently lower-impact modes, energy carriers, places, or times; and finally, improving the efficiency and cleanliness of technologies and infrastructure that still serve that demand.

Urbanism is fundamental to the first two aspects. The most direct way to “avoid” is compact, complete neighborhoods that reduce trip lengths and vehicle-miles traveled (VMT). And fundamental to”shifting” is safe, reliable transit and protected bike networks that move trips to efficient modes suited to small batteries.

“Avoiding” and “shifting” before “improving” to electrification saves resources by requiring fewer batteries, chargers, and grid upgrades to meet the same mobility needs. It lowers net cost and raises accessibility, since short trips fit low-cost e-bikes and walking and high-utilization charging cuts per-trip costs. And it frees up cash—city capital once aimed at road widening and parking, plus household savings from ditching a second car, can fund more charging, transit, and building electrification.

Urbanism creates new EV opportunities for equity (and durability)

Urbanism provides a way to focus on electrifying the modes that are key to making sure everyone is served—buses, shared fleets, e-bikes, and neighborhood carshare—and where air pollution burdens and cost pressures are highest.

Such a lense can help to elevate electric buses and bus rapid transit in high-ridership corridors with bus-priority lanes; protected bike networks with e-bike purchase, charging, and maintenance support; on-street and multi-family charging in renter-heavy and lower-income neighborhoods; and community ownership models and fare policies that reduce total mobility costs.

This spreads benefits beyond car owners and builds a wider coalition for outcomes that are more likely to be lasting.

Some implications

As the synergies beween urbanism and electrification come to more light, so to does the opportunities for agencies and experts working on them to address the issues together.

Public utility commissions have a stake in VMT. Per-capita VMT reduction and electrified trip share are relevant planning metrics. Encouragement is sensible for utility programs that support location-efficient electrification with make-readies for multi-family housing, depot charging for transit and delivery fleets, managed charging, and V2G. Coordinate electric upgrades with targeted gas decommissioning as districts densify and electrify.

Electric vehicle advocates have a stake in advocating compact development to cities. They can promote zoning reform near jobs and transit, parking reform, complete streets and protected bike lanes, bus lanes, and curb management that prioritizes transit and zero-emission delivery.

Cities and municipal planning organizatons have a stake in targets for electrified trip share and per-capita VMT, not just EV registrations. They can aopt EV-ready and e-bike-ready building codes that require conduit and panel capacity in multi-family and commercial projects; site charging facilities to maxomise utilization at depots, mobility hubs, main streets, and curbside at multi-family buildings; and support e-cargo logistics and consolidation centers to cut van miles.

Transit agencies which seek to electrify high-frequency routes first have a similar stake in supporting greater density as well as protected lanes and other infrastructure to support a better service experience and more riders. More on the technology side, they can align schedules for layover charging, design depots for future V2G revenue and resilience, and pair bus electrification with bus-priority street design to amplify benefits.

Utilities have a stake in buiding an ecosystem that rewards them for expeditiously electrifying everything while providing maximum public benefits. In the near term they can offer fleet and multi-family tariffs with managed charging and capacity subscription options, fund make-readies in disadvantaged communities and at mobility hubs, and deploy more school-bus and transit-bus V2G where feeders are constrained, and coordinate with building electrification to enable gas main retirement.

States and departments of transportation can tie transportation funding to per-capita VMT reduction and electrified trip growth, streamline permitting for curbside and depot charging and for utility upgrades tied to district electrification, and synchronize clean power timelines with transport electrification to maximize emissions cuts.

Employers and developers can site near frequent transit and bikeways, replace parking minimums with mobility benefits, provide e-bike and transit stipends, install shared and open-access charging and secure e-bike parking, and convert last-mile delivery to e-cargo bikes where feasible.

Bottom line

Use urbanism to right-size the transportation challenge—shorter trips, more choices, closer destinations—and electrify mobility and buildings as you build compact, complete neighborhoods. Do that, and the rest of the system—chargers, fleets, and the grid—becomes cheaper to deploy, simpler to operate, and more equitable in its benefits.

Categories
Uncategorized

Urbanism and electrification are key to climate solutions that make life better, and they are friends

Building climate resilience and improving daily life hinge on two powerful, complementary levers: access‑oriented urbanism and clean electrification.

Each delivers lower costs, cleaner air, and greater resilience; together they do more—reducing energy demand, smoothing grid peaks, and keeping essential services running through heat, storms, and outages.

What follows introduces these two pillars, shows how they reinforce one another, and highlights practical, near‑term moves communities, agencies, and firms can take to advance climate action and well‑being at the same time.

Two pillars for climate and well‑being

Urbanism

Urban form sets the floor for energy use and travel. Compact, mixed‑use, transit‑oriented neighborhoods organized around access typically cut per‑capita transport emissions 20–50% and building energy 10–30% versus car‑centric sprawl—while lowering infrastructure and household costs.

Access‑first design puts homes, jobs, schools, groceries, parks, and clinics closer together. Shorter trips unlock walking, biking, and high‑ridership electric transit as the default. They also reduce the electricity needed for mobility even as vehicles electrify.
Safer, cooler streets are health and climate infrastructure: shaded, traffic‑calmed corridors protect walkers and cyclists; protected lanes and safe crossings cut injuries; elevated and flood‑safe segments safeguard transit and emergency access. Trees, cool/permeable surfaces, and greenways can reduce neighborhood heat by about 2–5°F and manage stormwater.

Freight microhubs, e‑cargo bike delivery, and smart curb management reduce double‑parking, congestion, noise, and local air pollution. These strategies improve access while easing energy and space demands.
Gentle density near transit supports affordability, social cohesion, and age‑ and disability‑friendly design. Predictable loads in compact areas make electrification—including district energy and neighborhood‑scale batteries—cheaper and faster.

Electrification

Electrification replaces direct fossil fuel use with power from a grid that is getting cleaner each year. Electricity generation is 25% of US greenhouse gas emissions. Electrification leverages the cleaner grid to cut transportation (28%) and buildings (13% direct; buildings also use 75% of US electricity).

Demand‑side management—efficiency, load flexibility, and smart pricing—shrinks and shifts load so electrification fits the grid. The IPCC estimates demand‑side strategies could cut end‑use emissions 40–70% by 2050. DSM is central to realizing that potential in the US.
In buildings, weatherization and high‑efficiency heat pumps, heat‑pump water heaters, induction cooking, and cool roofs lower bills, reduce heat stress, and cut local pollution. District thermal systems that use heat pumps and waste heat deliver scale benefits in compact areas.

In mobility, EVs, e‑buses, and e‑trucks paired with managed charging soak up midday solar and overnight wind. Vehicle‑to‑building/grid can power shelters, signals, and clinics during outages. Right‑sized, interoperable charging at depots, curbs, and homes makes low‑carbon travel reliable and affordable while reducing refinery and upstream emissions.

Rooftop solar, batteries, and community microgrids keep critical services running during storms, heat waves, and wildfires. Grid hardening and flexible loads improve reliability as extremes intensify.

Cutting waste before adding supply is among the most cost‑effective decarbonization steps because it avoids fuel and grid upgrades. Electrification and efficiency lower utility bills and improve indoor air, with outsized benefits for overburdened communities.

How urbanism and electrification multiply one another

Urbanism enabling electrification

Proximity, smaller homes, and shared walls reduce kWh per capita. Shorter trips cut the electricity required for mobility, lowering costs and grid upgrades.

Concentrated, predictable loads justify district thermal, thermal storage, and neighborhood batteries. Urban greening lowers peak cooling demand citywide.

Parking reform and right‑sized streets free land and budgets for housing, solar canopies, and microgrids. Shift/avoid strategies embedded in urban form reduce the need for new road capacity and lower vehicle manufacturing emissions even as fleets electrify.

Electrification enabling urbanism

All‑electric buildings and vehicles cut street‑level pollution and noise, improving public space and health.

Managed EV and e‑bus charging helps integrate renewables. V2G/V2B fleets and community microgrids keep mobility and essential services running through outages.

Curbside power and interoperable charging support e‑cargo bikes, micromobility, and car share. When paired with smart tariffs, these systems expand access without spiking peaks.

Rich opportunities at the urbanism–electrification seam

Transit‑oriented development plus district energy: Build mid‑rise, mixed‑use neighborhoods around frequent transit and connect buildings to low‑temperature district thermal loops served by heat pumps and waste heat. Result: fewer car trips, lower building loads, and steadier demand that improves grid economics and reliability.

Diversified, electrified mobility beyond car‑only: Create a choice‑rich network—frequent transit, protected bike/scooter lanes, safe crossings, EV car share, integrated fares—with right‑sized depot and curb charging. People can drive less without losing access, cutting energy and emissions and easing grid peaks via managed charging.

Micromobility and low‑speed electric networks: Build continuous, protected lanes and calm streets for e‑bikes, e‑scooters, and neighborhood electric vehicles, with secure, fire‑safe charging or battery‑swap. Hyper‑efficient short trips replace car journeys, trimming demand, emissions, and noise while expanding equitable access.

Comprehensive, high‑quality bike parking where it matters: Provide abundant, secure, 24/7 bike parking and charging at transit stations, schools, workplaces, commercial districts, and housing, with on‑street corrals near destinations. Reliable end‑of‑trip facilities multiply cycling uptake, unlock first/last‑mile access to transit, and relieve curb pressure.

Electrified bus depots with solar, storage, and managed charging: Equip depots with onsite generation, batteries, and smart charging or V2G to power zero‑emission buses and support local feeders. Cleaner, quieter service boosts ridership; flexible capacity integrates renewables and stabilizes the grid.

EV‑ready affordable housing near jobs and transit: Pair deep efficiency, all‑electric heat pumps, rooftop solar, pre‑wired Level 1/2 charging, and secure e‑mobility rooms. Residents get low utility and travel costs and clean air; predictable loads ease grid planning and strengthen resilience.

Complete streets with cool pavements and shade trees: Reallocate space to protected bike lanes, wider sidewalks, and transit priority, and retrofit surfaces with high‑albedo materials and canopy. Safer active travel and cooler microclimates reduce VMT, peak electricity demand, and heat risk.

Mobility hubs powered by microgrids: Co‑locate transit, bike share, e‑scooters, car share, parcel lockers, and charging under solar canopies tied to community microgrids. Riders get seamless low‑carbon trips through outages; cities cut last‑mile emissions and harden critical access.

Smart curb management and freight microhubs: Convert select parking to time‑managed loading zones, e‑cargo bike depots, and lockers with curbside power and digital permits. Faster, cleaner deliveries cut double‑parking, fuel use, and noise while improving safety and air quality.

Heat‑pump retrofits with weatherization and community cooling: Target multifamily buildings for envelope upgrades, efficient heat pumps, cool roofs, and shared resilience rooms with backup power. Lower bills and emissions pair with lifesaving protection during heat waves and outages.

Neighborhood resilience centers with solar and storage: Retrofit libraries, schools, and community centers to provide cooling, clean air, water, device charging, communications, and medical support during outages and heat or smoke events. Tie these hubs to microgrids and V2B/V2G fleets so they serve daily needs and deliver lifesaving services in emergencies.

In short, lead with urbanism and access‑oriented electrification. Together they deliver the bulk of the climate solution set while directly improving reliability, affordability, health, and resilience.

Categories
Uncategorized

15-minute neighborhoods: What they are, what they aren’t, and why they help

The 15-minute neighborhood is a simple idea with big upside: design places so most daily needs—groceries, schools, parks, clinics, pharmacies, childcare, and basic services—are reachable by a short walk, roll, bike ride, or quick transit trip from home. It doesn’t ban cars or limit movement; it adds convenient, local options so people can choose the mode that fits the trip, the weather, and their abilities.

Where the idea comes from

Deep roots: Early 20th-century “neighborhood unit” planning (Clarence Perry) and mid‑century main streets already aimed to put daily needs nearby. Jane Jacobs argued for fine-grained, mixed-use streets with “eyes on the street.”

Contemporary framing: Urbanist Carlos Moreno popularized the “15-minute city” in Paris, where the city invested in schools-as-community hubs, local services, and safe streets. Variations exist worldwide: Melbourne’s “20-minute neighborhoods,” Seoul’s “10-minute city,” and Sydney’s “30-minute city.”

Related movements: New Urbanism, transit-oriented development, and complete streets all reinforce the principle of proximity plus safe, reliable mobility choices.

Why it works

Time and convenience: Shorter trips mean less time stuck in traffic and more time for family, rest, or work.

Health and safety: Safer speeds, protected crossings, and continuous sidewalks/bikeways reduce injuries and make everyday activity easier.

Affordability: Fewer or shorter car trips lower household transportation costs. Mixed housing types near services let more people live where life is convenient.

Climate resilience: If a road floods or fuel is scarce, multiple local options keep essentials reachable. Shade, trees, and local amenities reduce heat exposure and long, risky trips during extreme weather.

Local economies: Foot traffic supports small businesses; main streets with steady, local customers tend to be more resilient during shocks.

Inclusion: Universal design—smooth sidewalks, curb ramps, shade, benches, audible signals, and frequent, accessible transit—expands independence for seniors and people with disabilities.

What a 15-minute neighborhood looks like in practice

Mixed-use zoning that allows corner stores, clinics, and childcare near homes.

Gentle infill housing (ADUs, duplexes, small apartments) near transit and jobs.

A connected, protected network for walking, rolling, and biking, plus frequent transit on key corridors.

Safe arterials: right-sized lanes, frequent crossings, median refuges, and protected bike lanes near schools, parks, and shops.

Shade trees, lighting, and weather protection at stops and along routes.

Curbs managed for loading, deliveries, and accessible parking, not just long-term storage.

Common myths—and the facts

Myth: 15-minute neighborhoods are ‘lockdowns’ in disguise.

Fact: The concept is about land use and service access, not restricting movement. There are no gates, passes, or tracking required. People can still drive across town or across the region; they simply don’t have to for every errand.

Myth: They’re a surveillance scheme.

Fact: You don’t need any surveillance to allow a bakery or clinic near housing, add shade and benches, or run buses more often. The tools are zoning changes, safer street design, and better transit—none require monitoring individuals.

Myth: They hurt seniors and people with disabilities.

Fact: Proximity plus universal design makes life easier: shorter distances to essentials; smoother, wider sidewalks; shorter crossings; reliable paratransit and level boarding; more benches and shade. Protected bikeways also reduce sidewalk cycling, making sidewalks calmer for mobility devices.

Myth: Emergency response gets worse.

Fact: Calmer, well-designed arterials with center turn lanes, protected facilities, and signal preemption maintain or improve response times while reducing severe crashes—the incidents that most often delay responders.

Myth: Businesses and deliveries can’t function.

Fact: Cities pair local access with dynamic curb space, timed loading zones, and alley access. Many retail streets see equal or higher sales when streets are made safer and more inviting for nearby customers.

Myth: It only works in dense European cities.

Fact: The principle scales. Suburbs can cluster daily needs around existing centers, add neighborhood connectors, and allow modest infill near schools and transit. Melbourne’s 20-minute model and many North American main-street revivals show how to retrofit gradually.

Where conspiracy thinking comes from—and why it doesn’t fit here

Conflation with traffic filters: Some cities pilot “low-traffic neighborhoods” that discourage cut‑through driving on residential streets using planters or cameras. Online, these have been mislabeled as “movement bans.” In reality, people can still enter and exit, emergency vehicles and deliveries are accommodated, and the broader idea of a 15-minute neighborhood doesn’t require traffic filters at all.

Pandemic trauma and mistrust: After COVID restrictions, proposals to change streets can trigger fears of lost freedom. But 15-minute planning is the opposite: it increases choices and reduces dependence on any single mode or road.

Algorithmic amplification: Sensational claims spread faster than zoning maps. Transparency, co-design, clear goals, and time-limited pilots with public evaluation help rebuild trust.

Legitimate concerns—and why they’re often overstated (and solvable)

Displacement and rising rents: Convenience is valuable. If we add amenities without adding homes, prices can rise. The fix is to pair investments with more housing (including affordable and social housing), right-to-return policies, tenant protections, community land trusts, and targeted homeownership support so existing residents benefit.

Equity in siting: Improvements sometimes arrive first in affluent areas. Cities should prioritize underserved neighborhoods for sidewalks, crossings, shade, clinics, and transit—co-designed with residents.

Suburban feasibility: Not every place will hit “15 minutes” for everything. Start with a few anchors—grocery, primary care, a park, childcare—within 15–20 minutes for most homes, then fill gaps. Frequent transit links stitch multiple “15-minute” pockets into a connected city.

Weather and climate: Heat, rain, snow, and smoke are real constraints.

Design for them: continuous shade, cooling shelters, winter maintenance of sidewalks and bikeways, sheltered stops with real-time info and backup power, and redundant networks so people can choose the safest route.

Parking and car access: The goal isn’t to ban cars; it’s to right-size parking and keep access for those who need it. Unbundled parking, shared lots, and well-managed curbs preserve availability without inflating housing costs or paving over main streets.

Business logistics and trades: Set aside curb space for loading and service vehicles, offer delivery windows, and maintain through-access on commercial streets while calming speeds and adding crossings.

How cities get there—step by step

Update zoning to allow mixed-use and gentle infill near transit, schools, and main streets.

Build a connected network of protected bike lanes, neighborhood greenways, and continuous sidewalks, with frequent, safe crossings on arterials.

Run frequent transit on a core network and prioritize it with bus lanes, signal priority, shelters, and accurate real-time information.

Cool and drain the public realm with street trees, shade structures, permeable paving, bioswales, and floodable parks.

Manage the curb for access: loading zones, short-stay parking, accessible spaces, and pickup/drop-off areas tied to demand.

Invest first where need is greatest, and pair every capital project with anti-displacement tools and accessibility upgrades.

Use quick-build pilots to test changes, measure results, and adjust with the community before making them permanent.

Bottom line

A 15-minute neighborhood is about proximity, safety, and choice. It helps people reclaim time, lowers everyday costs, supports local businesses, and keeps essentials within reach when systems are stressed. It isn’t a plot to restrict movement or track anyone; it’s a practical blueprint for neighborhoods that work better for kids, seniors, people with disabilities, and everyone in between—on ordinary days and during disruptions alike.

Categories
Uncategorized

Instead of blaming “greedy developers” for a lack of good housing, change the rules

It’s easy to look at a crane over a luxury condo in a town where housing is unafforable and conclude developers are the problem. But developers don’t set the rules of the game—they play the one we’ve written. They build what pencils out under today’s zoning, fees, parking mandates, timelines, interest rates, and lender requirements. If the outcome is too many high-end units and too little “missing middle,” that’s a policy failure, not villainy.

Why so much “luxury”? Because it’s what survives our cost stack and risk. Urban infill is expensive: land is dear, materials and labor have climbed, interest rates and insurance are up, and years of hearings, appeals, and environmental reviews add carrying costs. Lenders then demand proof the project can fetch top-of-market rents or pre-sales to cover that risk. When you finally clear the hurdles, you’re left with a pro forma that only works at the higher end. The “luxury” label is often a finance outcome, not a gold-plating decision; the granite countertops are a small line item compared with land, structured parking, code compliance, utility upgrades, and delay.

Meanwhile, blocking infill does not stop growth—it displaces it to the fringe, where it consumes more land, locks in car dependence, and pushes housing even farther out of reach. If you care about affordability and about preserving rural nature, you need cities to add homes where infrastructure already exists.

Developers respond to incentives just like everyone else. Few people blame “greedy farmers” for growing almonds in a drought; we recognize that water rights, subsidies, crop insurance, and market prices shape what farmers plant. If we want different crops, we change the farm bill, not the farmer’s personality. Housing is no different. If towns want more middle housing and below-market options, they must rewrite the incentive structure so those homes are the easiest, least risky thing to build.

What that looks like:

Legalize abundant, gentle density. Allow duplexes, triplexes, fourplexes, cottage courts, and small apartments on residential lots. Right-size setbacks, lot sizes, and height limits so “missing middle” actually fits.

Remove parking minimums. Mandatory parking is a hidden tax that kills small infill and adds tens of thousands of dollars per unit. Let the market and curb management handle parking.

Make infill by-right and fast. Predictable, swift approvals cut risk and cost. Use clear form-based codes, pre-approved plan sets, and ministerial review for code-compliant projects.

Upzone near transit and jobs. Pair added capacity with great transit, safe walking and biking, and reduced car dependence to lower household costs.
Calibrate inclusionary tools. Use inclusionary zoning, density bonuses, and in-lieu fees where the economics support them; don’t set requirements so high that nothing gets built. Publish feasibility studies and adjust as markets shift.

Put real money on the table. Fund social and affordable housing via bonds, tax credits, public land, land banks, and revolving acquisition funds. Deep affordability requires subsidy everywhere.

Support diverse builders. Create small-site loan programs, reduce impact fees for smaller units, legalize mass timber, and simplify condo liability so small and non-profit developers can produce starter homes, not just mega-projects.

Protect tenants and prevent displacement. Right-to-counsel, relocation assistance, anti-harassment, targeted rent stabilization where allowed, and community land trusts can stabilize households while production ramps up.

Align taxes and infrastructure. Use value capture and tax-increment tools to fund local improvements, and stop expanding highways that spur sprawl and raise per-unit costs in cities.

When we do these things, developers will still seek profit—but the profitable projects will increasingly be the ones communities want: abundant, pro-social housing close to jobs and transit, with a healthy share of income-restricted homes. Blaming “greedy developers” feels satisfying for a moment; changing the rules harnesses private capacity to deliver public goals.

So the next time you see a proposal for infill, don’t ask, “Why are they building luxury?” Ask, “Have we made it legal and feasible to build anything else?” If the answer is no, fix that.

Categories
Uncategorized

If you like unspoiled rural nature, you’ll love urbanism

If you want to keep the woods quiet, habitats intact, and night skies dark, let cities be cities. One of nature’s best friends is compact, walkable, transit-rich urbanism. What mostly threatens woodlands and solitude isn’t development within already urbanized places—it’s low-density sprawl pushed outward by our overreliance on cars.

Enemy #1 of wildlands and habitats is the sheer land consumption of sprawl. A single subdivision can consume hundreds of acres that were fields, forests, or habitat the month before. Detached, large-lot housing uses many times more land per household than apartments or townhomes, multiplying the footprint of each new resident. Sprawl also fragments landscapes. Roads, driveways, lawns, and cul-de-sacs slice continuous habitat into isolated patches. Edge-loving generalists like deer and raccoons thrive, but many sensitive species vanish, while domestic cats, lawn chemicals, and invasive plants compound the damage.

Asphalt and autos extend that harm. Building outward requires vast new lane-miles, parking lots, and driveways. Roads kill wildlife, block migrations, spread salt and microplastics, and add noise and light—erasing the sense of solitude even deep in once-quiet places. When homes, jobs, schools, and stores are far apart, every errand becomes a car trip. Vehicle miles traveled soar, making transportation a major source of greenhouse gases and local air pollution that stress ecosystems. Sprawl also pushes into the wildland-urban interface, extending development into fire-prone landscapes and floodplains and forcing costly suppression, hardening, and infrastructure that reshape natural processes and divert resources from conservation.

By contrast, compact cities and public transportation preserve nature by keeping our footprint small. When more people live in mid-rise buildings, townhomes, and “missing middle” housing near daily needs, the land spared at the edge can stay farms, forests, and habitat. A single infill apartment on a former parking lot can house hundreds of families on a couple of acres; the exurban alternative might consume hundreds of acres and miles of new roads. Transit, walking, and biking thrive when destinations are close together, so every rider on a bus or train is one fewer car adding lanes, parking, and pollution to the landscape.

Urbanism also lowers per-person energy use. Shared walls, smaller homes, and efficient buildings cut energy demand, while concentrated trips and services reduce per-capita emissions that stress natural systems. Reusing already paved or built sites—through infill, adaptive reuse, and brownfield redevelopment—protects intact soils and headwaters, and compact forms make green infrastructure like street trees, bioswales, and green roofs more cost-effective per resident. Urbanism doesn’t try to replicate wilderness; it makes real solitude possible by keeping human settlement from oozing across the map.

So why do we get confused and blame “development” in the wrong places? To the naked eye, a crane in a downtown neighborhood looks like nature losing. But most urban development happens on land that was already paved or previously built—parking lots, low-rise commercial strips, obsolete industrial parcels. Stopping those projects doesn’t stop growth; it displaces it. People still need homes, and jobs still grow. When we block infill in already urbanized areas, we push growth to the fringe, where it consumes fields and forests.

Several misunderstandings feed this. The backyard illusion tells us a big yard feels green, but yards and exurban lots are poor habitat compared with large, connected natural areas; they add edges, pets, pesticides, and roads. The crane fallacy fixates on visible city construction while incremental sprawl at the edge escapes scrutiny, even though an urban mid-rise can save orders of magnitude more land than it covers. Process asymmetry makes it easier to permit a greenfield subdivision by a highway than to reuse a parking lot in town; environmental review intended to prevent harm can unintentionally steer growth outward when infill is mired in delay. And parking and road policies—like minimum parking mandates and highway widenings—bake in car dependence, making sprawl the path of least resistance even when communities would benefit from proximity.

Loving nature in practice means saying yes to infill and welcoming housing and job space on underused urban land—parking lots, vacant parcels, and single-story retail strips—while embracing gentle density on neighborhood streets with duplexes, triplexes, and small apartments near transit.

It means building great transit and complete streets, prioritizing frequent buses, bus rapid transit, rail, and safe walking and biking networks, while managing parking and ending highway expansions that induce more sprawl.

It means aligning rules with outcomes by reforming single-use zoning and large-lot minimums, removing parking minimums, streamlining approvals for infill and adaptive reuse, and holding greenfield expansion to higher scrutiny.

It means protecting edges on purpose with urban growth boundaries, greenbelts, conservation easements, and transfer-of-development-rights programs that keep farms and forests intact.

It also means greening the city we have—planting street trees, adding pocket parks, daylighting streams, and expanding urban canopies and green roofs—so daily access to nature reduces recreational pressure on fragile rural places.

And it means being prudent in the wildland-urban interface by avoiding new housing in high-risk, ecologically sensitive zones and, where homes already exist, hardening structures rather than extending roads and services deeper into wildlands.

Consider a simple thought experiment. Picture 200 new households. In one scenario, they occupy a mid-rise built over a former parking lot near transit, shops, and schools. Most daily trips happen on foot, by bike, or on transit, and the land outside the city remains farms and forests. In the other scenario, those households spread across 200 lots beyond the beltway, each with a driveway, septic system, lawn, and two cars. Schools and shops are a drive away, new lanes get added, and the night sky dims across miles. If you prefer owls to traffic noise and stars to skyglow, the first scenario is the true conservation choice—even though it involves visible construction in town.

The bottom line is simple. If you like unspoiled rural nature, love urbanism. Welcoming more neighbors into compact, transit-served neighborhoods is how we leave more of the map to the trees, the wetlands, and the quiet. The real threat isn’t building within already urbanized areas; it’s spreading them outward, lot by lot, lane by lane, until solitude has nowhere left to go.

Categories
Uncategorized

15 urbanism myths, busted

Urbanism isn’t about forcing anyone to live a certain way. It’s about giving people more choices: the ability to live near daily needs, get around safely without a car if they want to, and afford a good home in a neighborhood that works for all ages and abilities. Here are 15 myths—and what the evidence and practice actually show—about middle-infill housing, transit-oriented development, 15-minute neighborhoods, safe streets, protected bikeways, road diets, parking reform, and frequent transit.

1. Myth: “More housing means more traffic.”

Fact: Putting homes near jobs, schools, and shops shortens trips and reduces driving overall. Transit-oriented development cuts vehicle miles traveled and emissions. “Road diets” and safer design move just as many people, more reliably. Building far from destinations lengthens every trip—that’s what clogs roads.

2. Myth: “Middle housing will ruin

neighborhood character and tank property values.”
Fact: “Missing middle” homes (duplexes, triplexes, fourplexes, cottage courts, ADUs) fit the scale of existing blocks when design standards focus on building form, not unit count. Gentle density gives teachers, nurses, elders, and young families attainable options, while stabilizing values and local businesses.

3. Myth: “15-minute neighborhoods are a war on cars.”

Fact: They’re a win for choice and convenience. You can still drive when it makes sense; you just don’t have to. When errands are walkable or bikable, roads and parking free up for trips that truly need a car. The result is less traffic, not more.

4. Myth: “Transit is a money pit because no one rides.”

Fact: Frequency and reliability drive ridership. Buses that come every 10–15 minutes, use all-door boarding, and get dedicated lanes or signal priority attract riders and lower cost per trip. Per person, moving people by bus or train is far cheaper than widening roads and building more parking.

5. Myth: “Protected bike lanes are only for the young and athletic—and they kill local business.”

Fact: Physical protection invites riders of all ages and abilities. After protection goes in, cities see big jumps in biking and fewer injuries. Retail corridors with protected lanes often see equal or higher sales because bikes and foot traffic bring more frequent, local customers.

6. Myth: “Road diets cause gridlock and make streets less safe.”

Fact: Converting four fast lanes to three (with a center turn lane) typically cuts severe crashes 20–50% by reducing speeding and left-turn conflicts. With better signal timing and safer speeds, person-throughput stays the same or improves—especially when paired with transit and bikeways.

7. Myth: “Without parking minimums there won’t be enough parking.”

Fact: Minimums force everyone to pay for abundant, often empty parking. When cities right-size or remove minimums, builders still provide parking where it’s needed—and not where it’s not. On-street space can be managed with fair pricing, permits, and loading zones. Shared parking, unbundled parking, and better travel options keep availability high without inflating rents and prices.

8. Myth: “Parking is free.”

Fact: “Free” parking is expensive to build and maintain. Its costs are baked into housing and goods whether you drive or not. Smarter curb management, demand-based pricing, and alternatives like transit and safe biking are cheaper and fairer than mandating more asphalt.

9. Myth: “Density increases crime.”

Fact: Design, not just density, shapes safety. Active ground floors, good lighting, eyes on the street, and mixed uses improve natural surveillance. Areas with more people around at more times of day often see fewer serious incidents than isolated, car-only environments.

10. Myth: “Infill just accelerates gentrification and displacement.”

Fact: The biggest driver of displacement is the shortage of homes in high-demand areas. Allowing more homes—paired with anti-displacement tools like rental assistance, right-to-return policies, community land trusts, social/affordable housing, and targeted homeownership support—relieves pressure and helps long-time residents stay.

11. Myth: “Safe-street designs slow emergency response.”

Fact: Modern designs are built with fire and EMS in mind. Standard 10–11 ft lanes, mountable curbs, speed cushions with wheel cut-outs, signal preemption, and emergency access planning keep response times on target. Safer everyday speeds reduce the number and severity of crashes that tie up responders.

12. Myth: “Bikeable, transit-friendly design is bad for seniors and people with disabilities.”

Fact: It’s better for them when done right. Smooth sidewalks, curb ramps, benches, shade, audible signals, shorter crossings, slower speeds, and mid-block refuges make walking and rolling safer. Frequent, accessible transit with level boarding, priority seating, real-time info, and strong paratransit/microtransit connections increases independence. Protected bike lanes reduce sidewalk cycling and conflicts, making sidewalks calmer for mobility devices.

13. Myth: “A four-lane arterial must stay four lanes; kids should ride on a different street.”

Fact: Arterials are where schools, parks, and shops often are. Safe, direct routes matter—especially for kids. Converting four lanes to three, adding protected bike lanes and better crossings, calms speeds, cuts crashes, and preserves person-capacity. “Just use a side street” often means longer, discontinuous, or unsafe detours that families won’t use.

14. Myth: “Drivers pay for roads, so drivers should decide how we spend.”

Fact: User fees like gas taxes and registration cover only a portion of road costs. Local streets and many arterials are funded by property, sales, and general taxes that everyone pays. Because we all fund the system, investments should prioritize safety, access, and moving the most people efficiently—not just moving cars.

15. Myth: “Instead of adding homes near jobs and schools, just run more intercity buses.”

Fact: Regional buses are great—but they’re complements, not substitutes, for housing near daily destinations. Long commutes cost families time and money, strain roads, and push emissions up. No bus can replace living near childcare, groceries, and community. The recipe is both/and: abundant homes near jobs plus strong regional transit.

Why this matters

Affordability: Gentle infill and parking reform lower housing costs. Transportation is the second-largest household expense; living closer to daily needs cuts that bill.

Safety: Designing for safe speeds and predictable movements protects people walking, rolling, biking, and driving—especially kids, elders, and people with disabilities.
Health and climate: Shorter trips, more transit, and safe biking/walking mean cleaner air and healthier communities.

Economic vitality: Walkable, transit-served main streets support local businesses and increase tax revenue per acre, easing long-term budget pressures.

Inclusion: Universal design and frequent, accessible transit expand independence for seniors and people with disabilities.

How you can help in your city

Support zoning updates that allow ADUs and middle housing near jobs, schools, and transit.
Back bus lanes, transit signal priority, and frequent service on busy corridors.

Champion protected bike lanes and safer arterial designs to connect schools, parks, and shops.

Ask for parking reform: unbundle parking, manage curbs with fair pricing, and remove blanket minimums.

Pair growth with anti-displacement tools developed with community leadership.
Engage seniors and disability advocates early to shape accessible streets, stops, and stations.

Urbanism is about giving people back time, money, safety, and choice—so neighborhoods work better for everyone, not just for cars.

Categories
Uncategorized

Calling changemakers for urbanism (part 2 of 2)

Time for new changemakers to step up

Urbanism is the business of all changemakers who care about public wellbeing and climate action. And indeed, most likely, urbanism needs you.

Here are some of the roles that especially need to step up for urbanism.

Policy professionals

Keep asking why things work they way they do in a city–or why they dont, or what it’s so hard to change–and you will find policy. An ordinance, a procedure, an expression of values or priorities (or lack thereof) by electeds, an implied understanding about what those electeds want. An adopted budget, one of the most concrete expressions of policy of all.

So urbanism needs elected officials, staff policymakers, and advocates. What they can do:

Align rules with outcomes: Shift from prescriptive codes to outcome-based standards that prioritize safety, access, housing supply, and emissions reduction. Reform parking minimums; allow more housing types near jobs and transit; legalize gentle density.

Integrate health and climate: Bake active transportation, heat mitigation, flood resilience, and zero-emissions targets into land use, capital planning, and procurement. Require climate risk and health impact assessments for major projects.

Make permitting predictable and fast: Transparent timelines and digital workflows speed good projects without sacrificing review quality. Pair speed with community benefits and accountability.

Fund the right things: Invest in sidewalks, transit priority, street trees, and maintenance—not just expansion. Use value capture and impact fees to support affordable housing and public realm upgrades.

Pilot, measure, iterate: Start with place-based pilots; track safety, access, small-business vitality, emissions, and equity; scale what works.

Facility professionals

One of the most formative aspects of a town is its accumulation of physical facilities–the buildings, community centers, campuses, and neighborhood districts that draw people in and bring them together. A town in not much without these facilities, and the way these facilities are made up and operate together have a great impact on the wellbeing of a town’s residents.

Urbanism needs real estate developers, owners and operators of buildings and other places where people work, study, shop and visit, and administrators of community centers and campuses. What they can do:

Treat sites as part of the city, not isolated parcels: Open campuses to neighbors with permeable edges, public pathways, and welcoming ground floors. Prioritize mixed-use and human-scale design.

Reduce travel demand and improve access: Offer transit benefits, manage parking smartly, provide bike and micromobility amenities, and coordinate with cities on first/last-mile solutions and safer streets.

Build and operate for climate and resilience: Deliver high-performance buildings, green roofs, shade and trees, stormwater capture, and onsite renewables. Join or create district energy and thermal networks.

Support local economies and inclusion: Lease to small, local businesses; adopt community hiring and procurement; create flexible, affordable ground-floor spaces; invest in public realm and shared amenities.

Make places people want to be: Provide third places, restrooms, water, seating, and wayfinding. Good operations—security that’s welcoming, maintenance that’s responsive—shape perception and use.

Anchor institutions as civic partners: Hospitals, universities, stadiums, malls, and airports can act as resilience hubs, workforce pipelines, and transit anchors when they align their capital plans with civic goals.

Local government executives

The practice of urbanism has rapdily evolved over the last couple of decades. The field now has the benefit of science and evidence-based practices throughout. However, a lot of the things that best practices point to are not intuitive, and the change inherent in making things better is instrinsically disruptive. Yet at the ened of the day, expert staff are foremost employees, and the plans and proposals they bring forward are limited by their organizational mandates.

So urbanism needs city managers, other local public agency top officials, and their senior leaders. What they can do:

Break silos and deliver as one city: Stand up cross-department delivery teams (planning, transportation, housing, public works, public health, sustainability, finance) with shared KPIs, pooled budgets, and a single accountable owner for priority corridors and districts.

Set and fund a short list of enterprise outcomes: Choose measurable targets (e.g., fewer serious traffic injuries, faster buses, more housing approvals, cooler neighborhoods, lower emissions) and tie them to the budget, capital plan, and leadership performance agreements. Publish dashboards and report progress.

Make permitting and project delivery predictable: Create one-stop shops, concurrent reviews, clear service-level agreements, and escalation paths; digitize workflows and inspections; empower project managers to unblock issues quickly.

Resource authentic co-design: Fund compensated engagement, translation, and community partners; share data in plain language; build feedback loops from pilots into permanent programs.

Use procurement and partnerships as levers: Write outcome-based RFPs, prequalify innovative vendors, include pilot/scale clauses and social procurement; align investments with regional agencies, utilities, school districts, and anchor institutions.

Invest in care and operations: Protect O&M budgets; implement asset management and preventative maintenance for streets, lighting, trees, and transit stops; measure and improve reliability and cleanliness.

Build capacity and manage risk: Modernize classifications and training; use risk-based approvals; bring legal and procurement in early to enable innovation with compliance; maximize federal and state funding.

Public-interest investors

Urbanism presents profound opportunities to make life better and deliver important climate solutions at scale, including for groups who have been and continue to be the most left out. However there is incredible inertia in the forces that govern communities, and the work of making change–through policy, politics, public education, and more–needs resources.

So urbanism needs philanthropic funders, government grantmakers and providers of incentives, and impact investors. What they can do:

Align capital with public outcomes: Tie grants and investments to clear metrics for safety, housing affordability, emissions, and equity—and fund measurement and independent evaluation.

De-risk and crowd in capital: Offer first-loss, guarantees, PRIs/recoverable grants, and credit enhancements; fund predevelopment, technical assistance, and community engagement to get projects to “shovel ready.”

Reward enabling environments: Prioritize jurisdictions with predictable permitting, equitable zoning reforms, complete streets, and anti-displacement protections; use challenge grants and outcome payments to accelerate delivery.

Fund operations and stewardship: Support ongoing maintenance, activation, and care of streetscapes, trees, and transit amenities—not just capital ribbon cuttings.

Build local capacity: Invest in civic intermediaries, CDFIs, community land trusts, and city capacity for grant writing, data, and compliance—especially in smaller and under-resourced cities.

Scale what works: Back multi-year funds that replicate proven pilots; require open data and knowledge sharing to speed adoption.

Categories
Uncategorized

Urbanism needs a deeper bench (part 1 of 2)

Time for new changemakers to step up

Urbanism isn’t just about attractive streetscapes or elegant master plans. It’s the ongoing, collective work of shaping how cities and towns function and evolve—what gets built, who benefits, how life works, how people move, and how places weather shocks.

For too long, that work has rested mostly with a narrow set of specialists. If we want healthier, greener, more equitable places, we need a much broader coalition to step in and share the work.

Who traditionally works on urbanism

The practice and thought of urbanism has historically been led by a few groups of people. One is accredited trade professionals. City planners, engineers, and architects—often with credentials like AICP, PE, AIA—who translate big ideas into codes, drawings, infrastructure, and approvals. They steward the built environment through regulations, environmental reviews, traffic analyses, and capital projects.

Another is academics. Researchers in planning, architecture, geography, public health, economics, and sociology who build the evidence base, critique policy, and train practitioners.

This group brings rigor and essential expertise. But they alone cannot fulfill the potential of shaping towns for a better life and more livable future. They are limited in part by professional silos, risk-averse processes, and limited mandates.

Plans can look visionary yet stall at implementation; codes can seem to protect safety while inadvertently locking in car dependence or housing scarcity. To accomplish more, we need a fuller team of changemakers who influence how cities work day-to-day and new ways for all “urbanists” to work together.  

Why urbanism must involve a broader array of changemakers

The challenge is huge. Climate risks, housing affordability, public health, social inequity, and aging infrastructure are interconnected and urgent. No single department, profession, or sector can solve them.

How cities work is the sum of vast numbers and kinds of decisions. The urban fabric emerges from thousands of daily choices by landowners, employers, institutions, lenders, utilities, schools, and households—not only from formal planning processes and design studios.

Operations matter as much as plans. How buildings, streets, and campuses are operated determines safety, emissions, access, and cost over decades. Operators must be part of the design from the start.

Legitimacy affects durability. Projects that reflect lived experience and community priorities gain trust, survive political cycles, and deliver equitable benefits.

Little happens without financing and incentives. Policy can unlock or block capital. Private and civic actors will act faster and at scale when incentives line up with public goals.

Urbanism belongs to all of us. Specialists are essential, but the future of our cities depends on advocates, officials, operators, and owners stepping in. People who control rules, budgets, operations, narratives, and more. Working together, with shared goals and shared accountability, urbanism can deliver so much more.

Categories
Design guide

Bicycle parking design guide

To use a bicycle for transportation, the user needs a convenient, safe place to park and store it. 

More broadly, allowing bicycling to flourish, which some cities have done and made it the primary way people get around, requires parking that gives users with a lot of different needs a consistently good experience.

The stakes are higher with e-bikes. They expand access and make car-light living more feasible. But they can be more cumbersome to park and their higher value makes them more attractive to thieves.

Design Concepts

Good bicycle parking means facilities that are high quality, sufficient in capacity, and ubiquitous.

1. High Quality

Parking needs to be convenient, secure, and reliable for short stays (less than a few hours) as well as long stays (more than a few hours, often at work or home), with appropriately higher security for long-term use.

A. Short-stay or “short term” bicycle parking 

For short stays, provide racks that are easy to use, durable, and available where people need them.

Frame-mountable: Use racks that support the bicycle frame at two points and allow a U-lock through the frame and one wheel. The standard is the ”inverted-U” rack or similar design; one rack typically serves two bikes. Avoid wave, coat-hanger, grid, and wheel-bender racks, which do not properly support frame locking.

Navigable: Space racks 3.5+ feet apart when side-by-side or 10+ feet between centerpoints when in a series. Set back 4+ feet from a wall or curb when racks are perpendicular; 3+ feet when parallel (5+ feet from the curb if adjacent to head-in car parking). Maintain 6+ feet of unobstructed sidewalk width after bikes are parked. 

Solid and well-maintained: Anchor racks securely so they cannot be easily removed or cut; maintain them in good repair. Keep rack areas and access routes clear of storage, debris, and snow year-round.

Easy access: Locate racks on the same site as the use they serve, within 50 feet and as close as practicable to primary entrances. Ensure good lighting and passive surveillance. Avoid conflicts with walkways, door swings, loading areas, and utilities, and maintain ADA-compliant, obstruction-free access.

Reserved and protected: Reserve rack space for bicycles only. Protect their space from vehicle conflicts and door swings by using physical barriers or painted striping. 

Shelter adds value in wet or cold climates, whether inside a structure or via a standalone canopy.

B. Long-stay or “long-term” bicycle parking

For extended parking—at work, home, or transit connections—users need the basics of short-stay facilities plus enhanced security and convenience.

Locked enclosure: Provide weather-protected, enclosed spaces with controlled access (e.g., a room within a building or a standalone intrusion-resistant shed, cage, or lockers).

Easy access: Locate near entrances where users can roll a bike the entire way, as many bikes, especially e-bikes, are too heavy to carry. Use signage or wayfinding for locations that are not obvious.

E-bike supportive: Allow e-bikes and provide electrical outlets to support e-bike charging.

Helpful additions include cameras or other monitoring, lockers, shower facilities, and shared tools.

Space-efficient systems such as vertical or two-tier racks can increase capacity, but they can be difficult to use and may not accommodate larger bikes. Use them only for a limited share of total spaces if at all.

2. Sufficient Capacity

There should be enough spaces so users can count on finding a spot. A rule of thumb is at least 4 spaces (satisfied by 2 “inverted Us”) per site and at least 1 space per every 2,500 sq ft, with at least 25% long-term. 

3. Ubiquitous

Riders should expect to find usable, consistent facilities everywhere—similar to how drivers expect to find workable parking. Facilities That should have it:

Destinations: Places of work, study, shopping, recreation, and other daily activities.

Transfer points: Bus stops, points of interest in parks and urban areas, and other locations where a user would “leave” their bicycle to proceed onwards.

Housing: Where the owner sleeps, which, if a multifamily dwelling or other location other than a traditional single family home, they might not have the space or rights to. 

References

Examples of “Inverted U” racks (City of Boulder): Standard (view A), Standard (view B), Racks on Rails 

Further reading: Perspectives on bicycle parking

Categories
Uncategorized

Micromobility is a revolution in our ability to move

Battery-electric motors bring not only the power to cut carbon and mitigate spikes in fuel costs but also the literal horsepower to create a range of new classes of ultra-efficient small vehicles that can return large sums of money to people, unlock travel for people who are younger, older, and have special needs, and make towns quieter, calmer, and more joyful to be in.

High-quality affordable e-bikes, other micromobility devices, and ultra-efficient electric cars and vans with safe and comfortable conditions to use them could be outs to have–if we plan for them.

The opportunity for changemakers is to use the superior power of battery-electric motors to give people ultra-efficient, rightsized motor vehicles of all different kinds.

Resources

Perspectives on micromobility

Categories
Uncategorized

Why the “electrify everything” movement needs urbanism

Urbanism, which is the practice of shaping how towns and cities function and evolve, is crucial to the movement to electrify everything.

Here are some reasons:

  1. Urbanism powerfully shapes the critical systems best suited for electrification. Opportunities to electrify transportation and builds largely depend on local ordinances and economic incentives.
  2. Urbanism creates the possibility of scale by unlocking electrification that delivers tangible benefits. Aligning investor motivations with affordability, reliability, and other needs of residents and ratepayers requires those interests to be fully represented in energy legislation and utility regulation. Emphasizing the lens of communities creates a clearer agenda, improves negotiating power, and creates opportunities to consider new alternatives.
  3. Urbanism enables more affordable electrification and new service models. Denser, better-connected places improve the economics of public infrastructure and shared systems, making services easier to deploy and sustain.
  4. Urbanism uniquely enables integrated energy ecosystems. It provides tools and methods to manage the built environment and mobility more fluidly, which is essential for uniting building and transportation energy systems.
  5. Urbanism sets the stage for transformational electrification. The advent of battery‑electric motors has sparked anexplosion of experiments showing how powerful small motors can revolutionize how we move people and goods. Unlocking many of these possibilities depends on urbanism—through rules governing land use, public rights‑of‑way, and building design and use.
  6. Urbanism provides the scale needed to switch from gas to electric systems. A cost‑effective transition to all‑electric homes and buildings is easiest when done at scale—across neighborhoods, districts, or entire towns.
  7. Urbanism shapes how large‑scale electrification systems adapt to environmental shocks and stressors. The viability of major new investments depends on positioning them within broader community resilience strategies.

Electrifying everything is a technology upgrade, but it’s also a project of town-building. The fastest, most durable path runs through urbanism—how we plan land use, streets, buildings, and services. Treating neighborhoods as the unit of change lets us deliver tangible benefits, including lower bills, better air, and reliable service. It also integrates buildings and mobility, and designs for resilience from the start.

The work ahead is practical and local:, it is to align utility and city planning, update codes and incentives, finance district‑scale conversions, invest in the underlying systems for transit and the most efficient forms of e‑mobility, and to center community voices in every decision. Do that, and “electrify everything” becomes more than a slogan—it becomes a lived improvement in how people move, live, and thrive.

Categories
Uncategorized

A key to climate solutions is physical space—and urbanism uniquely holds it

Climate change is a spatial problem. Where and how we build determines how much we drive, the energy our buildings consume, how heat and floods move through neighborhoods, and which communities face the greatest risks.

Urbanism—how we plan, design, and operate cities and towns—is not a side quest to climate action. It is the operating system that either locks in emissions and vulnerability or unlocks rapid decarbonization and resilience.

Urban form is climate policy

Decisions about land use, street networks, and building patterns lock in behaviors and costs for decades. Spread-out development requires longer car trips, larger homes to heat and cool, and extensive infrastructure with high embodied and maintenance emissions.

Compact, mixed-use, transit-rich neighborhoods enable short trips, smaller and more efficient homes, and shared infrastructure. The result is lower per-capita emissions and better resilience, delivered not by individual heroics but by default options that make the low-carbon choice the easy choice.

The avoid–shift–improve framework

Avoid: Smart land use avoids unnecessary travel and oversized energy demand by bringing daily needs closer together and right-sizing buildings and infrastructure.

Shift: Street design and transit investments shift trips to walking, biking, and high-capacity transit.

Improve: Building performance, clean power, and electrified mobility improve the carbon intensity of the energy we still use.
Urbanism uniquely activates all three.

Transportation: Cut the tailpipe by design

Transportation is a major source of urban emissions and air pollution. Urbanism changes the baseline:

Put homes near jobs, schools, and services: Legalize more homes—especially around transit and along corridors—and allow a mix of uses so daily needs are a short walk or bike ride away.

Build connected, people-first street networks: Short blocks, safe crossings, protected bike lanes, and traffic-calmed streets make active mobility viable for all ages and abilities.

Make transit the fastest, most reliable option: Bus lanes, signal priority, frequent service, and welcoming stops increase ridership and slash per-trip emissions.

Reform parking: End blanket minimums, price curb space fairly, and manage demand. This reduces induced driving, lowers housing costs, and frees land for better uses.

Plan for shared, electric mobility: Mobility hubs, micromobility parking, and curb management help e-bikes and shared EVs complement transit rather than compete with it.

Buildings: Electrify, tighten, and reuse

Buildings drive energy use and peak demand. Urbanism sets the stage for clean, efficient operation:

Efficient envelopes first: Better insulation, airtightness, and passive design cut heating and cooling loads.

Electrify everything: Heat pumps, induction cooking, heat-pump water heaters, and all-electric new construction align buildings with a decarbonizing grid.

District energy and thermal networks: Share heating and cooling across blocks and campuses, recover waste heat, and integrate geo-exchange for reliable, low-carbon comfort.

Reuse over replace: Adaptive reuse, additions over teardowns, deconstruction, and low-carbon materials (like lower-cement concrete and responsibly sourced timber) cut embodied carbon.

Data and accountability: Building performance standards and energy disclosure drive continuous improvement across public and private portfolios.

Nature and public realm: Cool, absorb, and protect

Climate resilience lives in streetscapes and open spaces:

Beat extreme heat: Street trees, shade structures, cool roofs and pavements, and park access reduce heat stress and energy demand.

Manage water where it falls: Green streets, bioswales, permeable surfaces, rain gardens, and daylighted streams soak up storms and reduce flooding.

Respect risk: Steer growth away from floodplains and fire-prone edges, and use buyouts and equitable relocation where necessary.

Co-benefits: Greener neighborhoods improve air quality, mental health, and biodiversity while amplifying the cooling benefits of compact form.

Energy systems: Make neighborhoods power plants

Urbanism can help decarbonize the grid and make it more reliable:

Distributed energy resources: Rooftop and canopy solar, community solar, batteries, and microgrids keep critical services running during outages.

Flexible loads: Smart thermostats, thermal storage, and managed EV charging shift demand away from peak hours and accommodate more renewables.

Siting and standards: Zoning and codes that welcome solar, storage, and neighborhood-scale energy systems speed deployment.

Waste and materials: Close the loop

Circular construction: Standardize low-carbon specs, salvage materials, and create marketplaces for reuse.

District-scale opportunities: Capture and use waste heat from data centers or industry; invest in organics diversion to cut methane.

Clean logistics: Consolidation centers and curb policies reduce truck miles and pollution in busy districts.

Equity as a design requirement

Climate progress and equity must move together. Compact, well-served neighborhoods reduce energy and transportation burdens for low-income households, but only if paired with strong anti-displacement strategies: affordable homes near transit, tenant protections, community land trusts, workforce development, and local ownership. Community co-design ensures solutions reflect lived reality and deliver benefits where they’re needed most.

What this looks like on the ground

A transit corridor where parking minimums are removed, mid-scale housing is legalized, sidewalks are shaded, and center-running bus lanes cut travel times in half.

An all-electric, mixed-use district tied to a thermal network, with ground floors leased to local businesses and a microgrid that keeps lights on during heat waves.

A school sited in a neighborhood center, reachable by safe walking and biking routes, reducing school-run traffic and giving children daily active mobility.

A warehouse district that consolidates deliveries to e-cargo bikes for the last mile, trimming congestion and emissions.

How to accelerate now

Update the map: Align comprehensive plans, zoning, and capital budgets to put more homes and jobs near frequent transit and in walkable centers.

Build a bus-priority network: Paint, signals, and reliable headways deliver immediate emissions and equity gains at low cost.

Set clear building rules: Require all-electric, high-performance new construction; adopt building performance standards for existing stock; streamline deep retrofit permits.

Plant and protect urban forests: Target heat islands first; fund long-term maintenance; combine trees with cool surfaces and water features.

Reform parking and curbs: Remove minimums citywide, price curbs in busy areas, and reinvest revenue in local improvements.

Electrify operations: Transition municipal fleets and building systems; use procurement to pull markets toward low-carbon materials and equipment.

Measure what matters: Track mode share, vehicle miles traveled, building energy intensity, peak load, tree canopy, heat illness, and flooding—and report progress publicly.

The payoff

Urbanism bundles climate benefits with everyday improvements: shorter commutes, lower bills, cleaner air, safer streets, thriving small businesses, and more dignified public spaces. It is faster to implement than many heavy infrastructure projects, and its successes are visible on the sidewalk tomorrow, not just in an emissions ledger.

We will not meet climate goals without changing how our cities grow and operate. The good news is that the most effective climate policies can also make our communities more livable and fair. Treat urbanism as climate policy in three dimensions, and we can cut emissions, build resilience, and improve daily life at the same time.

Categories
Uncategorized

What urbanism is and what it can do

Urbanism is the practice of shaping how towns and cities function and evolve.

It’s what weaves the fabric of life in a metropolis. It is what determines how, and if at all, neighbors meet for coffee in a small burg.

Urbanism creates the physical realm in the places where people live and come together—the interconnected systems of land use, buildings, parks, and mobility. And in doing so it establishes places’ social, cultural, and economic dimensions.

Urbanism creates the possibility of making communities work better, from a safer crosswalk to more frequent transit service to a neighborhood battery power backup to cleaner air for a whole valley. 

Tools and methods

These are some of the things urbanism can do:

  • Determine how land is used—the quantity, form, and compactness of housing, the proximity of services, walkability, and good transit to that housing, and the extent and quality of parks
  • Establish building standards, including what they are used for, their makeup, and how tall they can be
  • Provide infrastructure, services, and investments for transportation, which includes allocating resources between transportation modes and managing transportation demand
  • Create opportunities and constraints for people to benefit from electrification in all its forms, thereby enabling—or hindering—the transition to widespread electrification
  • Protect and strengthen natural lands and tree canopy, local food systems, biodiversity while specifying the creative use of natural infrastructure in transportation and the built environment
  • Develop an architecture for the community’s water and waste, in particular, by determining where a community gets its water and what it does with its waste
  • Shape the community’s exposure to environmental shocks and stressors such as wildfires, floods, and heat
  • Manage air quality through coordinated actions in transportation, buildings, construction, industry, ports, and waste
  • Educate and coordinate large numbers of people living near one another to use their shared resources effectively and build self-reliance

In sum, urbanism powerfully shapes air quality, safety and health, access, affordability, contact with nature, social cohesion, greenhouse gas emissions, and climate resilience.

It sets the stage, maybe more than anything else, for our way of life now and in the future.

And perhaps most important of all, what urbanism does is up to us. Through policy and management, urbanism practice can and should improve.

Categories
Uncategorized

Lyft said private cars would be out by 2025–here’s what to ask next time

In 2016, Lyft cofounder and president John Zimmer wrote that by 2025 private car ownership would all but end in major U.S. cities. Fast forward: We’re not just off track but moving the opposite way.

Although the prediction should have been treated as unbelievable at the time, it was widely reported as credible, often with little scrutiny or independent analysis. Many readers and editors seemed eager for it to be true, perhaps because it fit a familiar story in which software rapidly overturns old systems.

Technological salvation is alluring, but enthusiasm can obscure how transportation really works. Smartphones and online retail moved fast because they could. Mobility is different. It is defined by land use, the allocation of rights, privileges, and funding, and infrastructure that lasts decades while continuously locking in supporting investments along the way.

Cars dominate because policy made it so. Highways, subsidies, zoning, finance, and design standards formed a meticulously-crafted ecosystem for automobiles. Homes have been separated from daily destinations, with gaps filled by roads that are wide and fast.

Transit, cycling, and walking are less common than driving. But it isn’t because they are inherently weaker or less popular. It’s because our current system treats the car as necessary and central for almost every trip, and constrains and prioritizes from there.

Automated vehicles have advanced, but slowly and within limits. Companies like Waymo show that meaningful progress takes time and careful deployment. We are prone to sweeping claims when they sparkle with tech optimism.

Looking ahead, we should not expect transformation to come from a single breakthrough. Rather, it will come from changing policy, reimagining urban design, and putting people at the center of mobility. That means funding choices, street space allocation, and land use decisions aligned with what we say we value.

The next time you hear about a miracle transportation breakthrough, here are some questions to ask:

1. What independent evidence supports this claim, and how could it be tested or falsified?

2. Which policies, budgets, and standards would need to change for it to work, and who has the authority to change them?

3. How must street design and land use shift to make the promised outcomes practical and safe?

4. What is the impact on people with below-average incomes and folks who can’t readily drive, including youth and the growing number of aging seniors?

Categories
Uncategorized

To advance climate and wellbeing solutions together, start with urbanism

If wellbeing-centered climate action makes change real by improving daily life—lower bills, cleaner air, safer streets, comfortable homes, access to parks—urbanism is how to deliver it at scale.

Urbanism is the practice of shaping how towns and cities function and evolve: the land uses, buildings, streets, parks, and services that set our social, cultural, and economic possibilities. Start there, and the climate-and-wellbeing agenda moves from abstract targets to concrete, durable gains.

Why urbanism is the natural home for wellbeing-centered climate action

Urbanism sets the stage for demand. Urban form determines trip lengths and modes, building energy use, and how much infrastructure we need—making it the lever that shapes emissions before any technology choice. Research led by Felix Creutzig shows demand-side measures in mobility, buildings, and materials could cut global emissions 40–70% by mid-century, while improving health, affordability, and comfort.

It stacks co-benefits. Streets that are safe for walking and biking cut emissions and cardio‑metabolic disease; trees and cool roofs reduce heat deaths and energy bills; mixed-use, transit-rich neighborhoods lower costs of living and stress.

It builds political durability. People defend improvements they feel on their block—safer crossings, reliable buses, quieter air, better housing. Those benefits create enduring constituencies that stabilize climate action over time.

Translating the wellbeing lens into urban moves (Avoid–Shift–Improve)

Avoid: Bring daily needs closer. Enable 15-minute neighborhoods with gentle density, mixed use, and complete neighborhoods near transit. Encourage telepresence where it saves time without sacrificing service quality.

Shift: Make better options the easy default. Frequent, reliable transit; safe, connected walking and biking networks; shared mobility; healthier, more plant-forward food environments; zero-emission delivery zones and cargo bikes for the last mile.

Improve: Upgrade what remains. High-performance, electrified buildings; district energy where it pencils; efficient, electric buses and freight; smart, flexible demand and storage that lower bills and ease grid integration.

Urbanism as a platform for co‑investment

Wellbeing initiatives attract partners beyond climate budgets. Health systems, housing agencies, utilities, insurers, school districts, and employers all benefit and can co-fund:

Heat-health + housing: Targeted tree canopy, cool surfaces, and weatherization in heat‑vulnerable neighborhoods.

Movement + air: Bus-priority lanes, safe routes to school, e‑bike libraries, and port electrification to cut NOx/PM and asthma.

Comfort + cost: Block-by-block retrofits of social and rental housing with concierge delivery to reduce bills and improve indoor air.

Multiplying clean energy possibilities

Efficiency-first urbanism shrinks the loads we must electrify and the grids we must build.

Compact, well‑insulated buildings and shorter trips mean:

Faster, cheaper electrification (smaller systems, fewer upgrades).

More reliable grids (flexible buildings, managed EV charging, district thermal storage).

Fewer stranded assets and lower total system cost.

Holistic and just by design

Urbanism integrates mitigation, adaptation, equity, and justice:

Target investments to communities most burdened by heat, pollution, and high energy costs.

Pair upgrades with anti-displacement policies, tenant protections, and community ownership (e.g., shared solar, resilience hubs in libraries and schools).

Use nature-based solutions—trees, bioswales, daylighted streams—to manage heat and floods while enhancing neighborhood wellbeing.

Faster adoption through visible, local wins

Lead with projects people can touch and feel within months:

Tactical traffic calming and protected bike lanes that become permanent.

All-door boarding and bus lanes that cut travel times immediately.

Simplified home upgrade pathways with one-stop shops and “pay on bill.”

Neighborhood microgrids or batteries that keep critical services running during outages.

Governance and finance that unlock the flywheel

Update the rules of place: zoning reform for mixed-use and modest density near transit; parking reform; complete streets; transportation demand management.
Set performance expectations: building performance standards, zero‑emission area pilots, heat-resilient design.

Align prices with outcomes: congestion and curb pricing tied to better transit; utility rates that reward efficiency and flexibility; meter parking to fund local streetscape upgrades.

Braid funding: combine climate, health, housing, resilience, workforce, and private capital; track and reinvest savings into equity.

A starter playbook for cities and regions

Diagnose: map 15‑minute access, heat and flood risk, air pollution hotspots, energy burden, crash risk, and transit gaps.

Recode space: legalize missing‑middle housing and mixed use near frequent transit; require active ground floors and shade.

Rewire streets: build connected bike/scooter networks, bus‑priority corridors, safer crossings, and calm speeds to 20–25 mph on neighborhood streets.

Refit buildings: run block‑by‑block electrification and weatherization campaigns, focusing first on low‑income housing; add heat pumps, induction, and ventilation.

Regreen neighborhoods: expand tree canopy, cool roofs/pavements, rain gardens, and accessible parks within a 10‑minute walk.

Rebalance logistics: establish zero‑emission delivery zones; enable urban consolidation centers and cargo bikes.

Resilience hubs: equip community facilities with solar + storage, cooling, air filtration, and communications.

Reprice and reinvest: reform parking and road pricing; use proceeds to improve transit, sidewalks, and affordability.

How this connects the dots

The wellbeing lens (from the previous piece) tells us what to maximize: health, affordability, comfort, time, and resilience—while cutting emissions.

Urbanism (as outlined in “What urbanism is and what it can do”) gives us the levers to deliver those outcomes: land use, buildings, mobility, parks, water, and waste.

Together, they form a practical strategy: change the rules and design of places to make low‑carbon living the easiest, healthiest, and cheapest choice.

Start with urbanism, and the benefits show up on the street, in homes, at schools, and in monthly bills. That’s how climate action becomes a daily improvement people can feel—and a transformation they’ll champion for the long haul.

Categories
Uncategorized

To use energy resources wisely, first “avoid,” then “shift,” and next, “improve” (ASI)

The avoid–shift–improve (ASI) framework is a conceptual tool to help policymakers and managers deliver maximum services for the fewest energy requirements and environmental harm.

ASI prescribes managing demand first and multiplies the possibilities for electrification.

ASI directs the following:

  • Avoid unnecessary demand for a service in the first place.
  • Shift remaining demand to inherently lower-impact modes, energy carriers, places, or times.
  • Improve the efficiency and cleanliness of technologies and infrastructure that still serve that demand.

ASI was coined for transportation, but it generalizes for energy-using activities more widely.

Transportation: avoid trips and vehicle-kilometers; shift to walking, cycling, transit, rail, coastal shipping; improve vehicles, fuels, operations.

Buildings and cities: avoid loads via passive design/right-sizing; shift to district energy and electrified end-uses and to cleaner times with demand response; improve envelopes, controls, appliances.

Industry and materials: avoid through material efficiency, reuse, and product longevity; shift to recycled feedstocks and electrified or hydrogen-based processes; improve motors, drives, heat integration, high-temp heat pumps.

Power systems: avoid peaks and losses; shift the generation mix to low-carbon sources and demand to low-carbon hours; improve plant and grid efficiency (advanced inverters, reconductoring, storage).

Digital/ICT: avoid unnecessary compute/data movement; shift workloads to low-carbon regions/times; improve chips, cooling, and utilization.

Issues it addresses include climate mitigation, air quality and health, congestion and reliability, resource and land use, energy security, affordability, and resilience.

Who should care

National and local policymakers, planners, and regulators (NDCs, CAPs, land-use/transport codes, building energy codes).
Utilities, ISOs/RTOs, and energy planners (resource adequacy, demand response, electrification).

Corporate leaders across fleet, real estate, operations, procurement, and product design.
Investors and lenders (capex timing, stranded-asset risk, transition plans).

NGOs, researchers, and community groups shaping equitable, demand-side solutions.
Anyone setting climate, cost, or reliability targets who must deliver results this decade.

Where it comes from

Origins: Early 2000s within the sustainable transport community, especially German development cooperation. The approach was codified and popularized through GTZ’s (now GIZ) Sustainable Urban Transport Project (SUTP) and partners.

A widely cited early synthesis is Dalkmann and Brannigan’s GTZ SUTP Module “Transport and Climate Change” (2007). Regional development banks (notably ADB) and networks like SLOCAT then embedded ASI in guidance and programs.

Beyond transport: ASI migrated into buildings, industry, and power as demand-side mitigation rose in prominence (e.g., IPCC AR6).

From modes to moments: “Shift” now includes shifting in time (load flexibility, demand response) as much as shifting modes or carriers.
From three pillars to four: Many practitioners add “Enable” to emphasize institutions, finance, pricing, design standards, and data that make ASI stick.

Integration with circular economy and sufficiency: “Avoid” increasingly overlaps with product longevity, reuse/repair, and service sufficiency.

Equity and co-benefits: Modern ASI practice foregrounds distributional impacts, access, and health, not just carbon metrics.

More rigorous metrics: Better methods to quantify rebound effects, lifecycle emissions, and system interactions help prioritize high-impact measures.

Why it matters—and what goes wrong if you ignore it

Faster, cheaper decarbonization: Avoid and shift measures often deliver near-term, low-cost cuts and reduce the scale of supply-side buildout needed.

Lock-in avoidance: Managing demand and mode/carrier choices now prevents expensive, high-carbon infrastructure lock-in and stranded assets later.

System reliability and resilience: Avoiding peaks and shifting to flexible demand can stabilize grids and networks under stress.

Multiple co-benefits: Clean air, safety, space efficiency, and affordability strengthen public support and create immediate value.

If you ignore ASI, you risk over-relying on “improve” (efficiency/clean tech) alone, which is slower to saturate and vulnerable to rebound effects.

You are likely to overbuild supply and networks, raising costs and exposure to delays, siting constraints, and public opposition.

You miss no-regrets options and equity gains that can make transitions durable.

You may still miss climate targets even with rapid tech deployment, because unmanaged demand and mode choices swamp improvements.

Categories
Uncategorized

To speed up large-scale climate solutions, call on local communities

Faster deployment of climate solutions would benefit us all, and local communities, through local governments, residents, advocates, and regional partners, are one of the most powerful vehicles to do it.

In almost every aspect of climate action, local communities enable, multiply, and sustain what is possible.

1. Where the opportunity is

Local communities are where most of the action happens. Roughly four in five Americans live in urbanized areas, and a majority live in large metropolitan regions. That share has risen for a century and is projected to grow toward 85 to 90 percent by mid-century. The urban archipelago, local communities and their surrounding suburbs, shapes daily life, culture, and economic activity. It is also where most state and national climate commitments must ultimately be implemented.

Urbanized areas large and small drive much of global emissions and can bend the curve fast. These areas account for roughly two-thirds of global energy-related CO2 emissions, a share that tends to rise with urbanization and income. Decisions at the community level about land use, transport, buildings, energy, and waste determine regional emissions pathways and long-lived infrastructure lock-in. Per capita, dense communities often have lower operational emissions for buildings and transport than car-dependent suburbs, yet high-income households can have larger consumption-based footprints. Both territorial and consumption emissions matter, and community decisions can influence each.

Local communities are also on the front lines of climate impacts and equity. They concentrate people, infrastructure, and services, which increases exposure to extreme heat, flooding, storm surge, drought, wildfire smoke, and power outages. Historic underinvestment and discrimination leave low-income communities, communities of color, renters, older adults, people with disabilities, and outdoor workers disproportionately vulnerable. Equitable investments such as tree canopy and cool roofs, flood protection and green stormwater systems, resilient microgrids and backup power for critical services, tenant-focused retrofits, and heat-health programs reduce risk while improving health, safety, and economic opportunity.

2. Specialized authority

Local communities hold specialized authority over the building blocks of decarbonization and resilience. Through planning, zoning, building codes, public works, public health, and emergency management, they set the rules and deliver the projects that shape emissions and vulnerability.

On the demand side, communities can accelerate building efficiency, electrification, and distributed energy through permitting reforms, incentives, bulk-buy programs, and performance standards. Many measures save money and improve comfort, health, and air quality. Demand-side actions across buildings, transport, and food systems can deliver a large share of needed emissions reductions by mid-century when backed by policy, infrastructure, and behavior change.

Local land use, mobility, and public realm decisions shape how people travel and how much energy they use. Zoning, street design, parking policy, pricing, and transit and active-mobility networks, often in concert with regional agencies, change mode share and trip length. Tools include transit-oriented development, complete streets, low-traffic or zero-emission zones, and congestion and curb pricing.

Communities influence buildings and energy systems as well. While states often set base energy codes, many local governments adopt reach codes and enforce strong standards for performance, benchmarking, and disclosure. They manage permitting and inspections and, where authorized, can require all-electric readiness in new construction. Municipal and community-choice utilities, franchise agreements, interconnection rules, and public procurement can speed clean electricity and distributed energy.

Materials, waste, and food systems are also in local hands. Zero-waste strategies, organics collection and compost, producer responsibility, low-embodied-carbon procurement, and construction material standards address hard-to-tackle, consumption-based emissions while creating local jobs.

3. Fertile ground

Local communities provide fertile ground for practical solutions because proximity creates scale, efficiency, innovation, and markets.

Compact, mixed-use, transit-oriented development reduces per-capita energy use. Well-designed urban form and active mobility can cut building and transport energy demand by a significant margin compared with sprawled patterns. Shared infrastructure, such as transit, district energy, and water and waste systems, lowers unit costs and speeds deployment.

Communities can coordinate large, multi-year programs that deliver benefits at population scale. Examples include mass retrofits, EV charging networks, bus and truck electrification, district-scale thermal networks, and nature-based resilience. When demand is large and predictable, local governments can reshape markets through bulk procurement of heat pumps, induction stoves, electric buses and garbage trucks, green concrete and steel, renewable electricity, and recycled materials. Local circular-economy policies such as deconstruction, organics diversion, and reuse reduce upstream emissions and stimulate new businesses.

Proximity also accelerates learning. Pilots move to practice when staff, universities, startups, utilities, and community organizations work together. Open data, challenge programs, living labs, and public-private partnerships help successful ideas spread across neighborhoods and into regional standards.

4. Sized for transformation

Communities are ideally sized for transformation. They are large enough to marshal real resources and small enough to move quickly and build trust. A neighborhood or district, hundreds to thousands of households in close proximity, shares streets, substations, schools, and social networks. That shared fabric makes investments like frequent bus service, contiguous bikeway systems, microgrids, resilience centers, and geoexchange loops both technically efficient and socially legible. Residents can see the benefits block by block, from quieter streets and lower bills to safer cycling and cleaner air. Because the boundaries are tangible, the outcomes are too, which makes it easier to organize, prioritize, and deliver.

At the household level, the transition fragments. Each home negotiating its own heat pump, panel upgrade, EV charger, or rooftop solar faces high transaction costs, variable quality, and equity gaps. Aggregating demand at the community scale unlocks bulk procurement, standardized designs, and trusted workforce pipelines. A shared geoexchange loop or neighborhood microgrid becomes viable when dozens or hundreds join, which lowers per-home costs and improves reliability. The same logic applies to electrification programs, since coordinated wiring upgrades by block, not by doorbell, minimize street disruptions and optimize grid capacity.

By contrast, state or national initiatives are often too distant to match local conditions and too slow to iterate. Communities can pilot a car-free corridor, a bus-priority grid, or a heat-pump buying club this year, measure results next year, and scale what works the year after. Local planning can align land use, permitting, and construction schedules, which is critical for building out bikeway networks or converting gas lines to electric-ready corridors. Because residents and small businesses are close to decision-makers, they can co-design projects, troubleshoot early, and build the social license that accelerates delivery rather than delaying it.

Communities also have practical tools to finance and deliver change. Special assessment districts can fund shared infrastructure. Community choice energy can procure clean power. Public or cooperative ownership models can support microgrids. Neighborhood retrofit programs can bundle insulation, heat pumps, and rooftop solar at negotiated prices. Peer effects amplify adoption as one block follows another, and local job training ties opportunity to place. Package climate upgrades as community upgrades, and you create a replicable module that is big enough to matter, small enough to manage, and ready to scale across a region.

5. Built for speed

Local communities create opportunities for change faster than any other level of government. While states often pass major legislation only every year or two and Congress moves in intermittent bursts when national coalitions and timing align, the United States has more than 90,000 local governments that are constantly updating codes, adopting plans, and approving budgets. The steady cadence of council meetings, school board votes, and special district actions creates a continuous pipeline of decisions where climate-forward choices can be made now, not at the next big legislative window.

Local government cycles move quickly. Staff draft an ordinance, the planning board reviews it this month, the council adopts it next month, and implementation begins with the next permit or paving season. Councils can also authorize staff to make decisions with streamlined community engagement so that execution does not stall between meetings. Budgets are annual and often adjusted midyear. Procurement windows are frequent. Departments can pilot, measure, and iterate in months rather than years. Fewer veto points and closer alignment between policymakers and implementers compress the design, enactment, and delivery loop in ways statehouses and Washington rarely can.

This speed shows up on the ground. Transit agencies can add bus-priority lanes with quick-build materials and adjust service in the next schedule change. Public works can stripe a protected bikeway network segment by segment as streets come up for resurfacing. Building departments can adopt reach codes where permitted, require EV-ready wiring, or roll out performance standards that apply with the next round of permits. Utilities under local or regional governance can approve demand-flex programs, neighborhood microgrids, or accelerated electrification pilots and refine them after a single season of data.

Local authority varies and state preemption is real, but even within those bounds local communities move fastest, and they learn fast. A successful ordinance in one place is copied by the next. Professional networks share model policies. Results travel as quickly as a council agenda. If the goal is to turn climate ambition into action at scale, harness the places that are always in session. Call on communities.

6. Coalition power

Local communities working together can create unique kinds of leverage.

Greater population density correlates strongly with voters and leaders who are more supportive of strong climate policy, from clean electricity standards and building performance requirements to zero-emission transportation initiatives. That means towns and cities are reliable political blocks that together can form formidable national coalitions.

On the economic front, mayors and local governments, including Climate Mayors, C40, ICLEI, and the Global Covenant of Mayors, negotiate with states, utilities, and major suppliers, align standards, and scale solutions across regions. Because many state economies hinge on metropolitan areas, organized local coalitions can accelerate statewide and national progress.

Local communities also hold the keys to creating formidable legal forces. Local governments vastly outnumber the relatively small set of large corporate polluters and their enablers.

Conclusion

Local communities concentrate the people, capital, tools, and know-how to cut emissions quickly, protect residents from escalating climate risks, and build healthier, more prosperous places. Empowering communities, and holding them accountable, can turn climate ambition into results at the speed and scale this decade demands.

Categories
Uncategorized

The future of climate solutions is in wellbeing initiatives

Shifting how we move, heat, cool, and consume can deliver large emissions cuts while improving quality of life. Conversely, initiatives to make people’s lives tangibly better, right now. Is a fast route to durable, scalable climate action.

When we organize strategies around human wellbeing, we unlock faster adoption, broader coalitions, and better economics than a technology-first, supply-only approach. Below are eight ways a wellbeing lens adds speed and staying power to the climate transition, with supporting research—especially from Felix Creutzig and colleagues—on how demand-side solutions can deliver large, near-term, cost-effective gains.

Wellbeing initiatives that advance climate action are policies, programs, services, and designs that reduce greenhouse gas emissions by directly improving daily life—lower energy bills, healthier air and food, safer and more convenient mobility, more comfortable homes and workplaces, and greater resilience. These initiatives emphasize demand-side solutions, urban form and services, and social practices; they are measured in tons of CO2 and also in human outcomes like health, affordability, and time saved.

1. Cost-effective, concrete results

A wellbeing-first focus prioritizes demand-side solutions—efficient buildings and appliances, mobility choices, circular material use, service redesign—that deliver measurable savings and emissions cuts at low or even negative cost. The IPCC catalogs dozens of such options with substantial, low-cost potential. Creutzig and co-authors show that demand-side measures could cut global emissions by 40–70% by mid-century, much of it consistent with better health, comfort, and affordability. Doing the cheapest tonnes first lowers costs, allow ms greater results for the resources invested, and frees up capital to scale clean supply.

2. Engine of co-investment

Wellbeing initiatives come bundled with co-benefits—lower energy bills, cleaner air, comfort, productivity, and resilience. Those benefits attract partners (health systems, housing agencies, insurers, employers, schools) who are motivated to co-invest, multiplying funding streams and impact. Dietary shifts and active mobility, for instance, improve health while cutting emissions—making them strong candidates for braided funding across climate, public health, and transportation.

3. Prospects for adoption and political durability

People adopt—and defend—changes that deliver direct, felt benefits. Programs built around comfort, convenience, savings, and health spread faster via social proof and are more resilient to political swings because beneficiaries become an enduring constituency. Default options, concierge-style delivery, and trusted messengers increase uptake, while visible local improvements create reinforcing policy feedbacks over time.

4. Multiplication of the possibilities (efficiency first + “ASI”)

A wellbeing lens emphasizes resource productivity—doing more with less—consistent with the Avoid–Shift–Improve (ASI) framework. Avoid unnecessary demand (e.g., better urban design, telepresence), shift to better modes and services (public transit, shared and active mobility, healthier diets), and improve the remaining demand with best-available tech (high-efficiency electrification). The research shows that when we start with demand-side measures, we shrink the loads that must be electrified, making grids and clean generation smaller, cheaper, and faster to build—amplifying the impact of every supply-side dollar. When people experience gains that help them personally, they are likely to spread the word and support policies and investments for more, effecting a virtuous cycle.

5. An overdue new holistic approach

Modern science calls for integrating mitigation, adaptation, equity, and justice. Wellbeing provides a practical organizing principle: prioritize measures that cut emissions while improving health, safety, affordability, and resilience, especially for those most at risk. This lens operationalizes climate‑resilient development and surfaces place-based, community-led solutions that standard, tech-first rollouts can miss.

6. Effectiveness through needs orientation

Centering users’ needs and experiences—rather than technologies—builds offerings people love to adopt and stick with. Human-centered design, behavioral insights, and service redesign (e.g., home energy upgrades delivered as a simple, trusted service) raise performance and equity. Iteration from real user feedback drives continuous improvement and cost declines.

7. Long-term orientation and aligned incentives

By rooting action in fundamental human needs—health, shelter, mobility, dignity—we plan transitions that last. A wellbeing lens also clarifies where policy must realign incentives (pricing pollution, rewarding efficiency-as-a-service and demand flexibility, valuing resilience and health outcomes) so business models compete on true, societal cost. Credible long-term roadmaps emerge when they’re matched to people’s lived needs and budgets.

8) Culture and consciousness
Wellbeing provides a shared language—clean air, comfort, pride in place—that resonates across ideologies. When people experience benefits personally and locally, climate action becomes a cultural project, not a partisan one. That invites broader participation and can trigger positive social tipping dynamics, accelerating change.

Putting it all together

Start where people feel it: target programs that cut bills, improve health and comfort, and simplify daily life.

Make “efficiency first” the design rule to shrink the problem, then electrify and clean the supply truly needed.

Fund through co-benefits: braid health, housing, resilience, workforce, and climate dollars.

Design for adoption: defaults, concierge-style delivery, trusted local partners, and continuous user feedback.

Align incentives: price pollution, reward performance, and measure health and equity outcomes, not just megawatts.

A wellbeing-centered approach can complement supply-focused pathways to deliver high mitigation per dollar today, build broad and more durable coalitions, and clear the runway for clean technologies to scale faster and cheaper. The result can be not only a safer climate but also healthier, more prosperous communities—now and for the long term.

Categories
Uncategorized

Local governments have uniquely influential powers for climate policy

Most of the focus of US climate policy to date has been at the federal level—for example, US EPA regulations and the Inflation Reduction Act.

And most of the rest has been with states, in particular, the work of California and other section 177 states to develop statewide climate laws, regulations, and investments.

An area of climate policy in the US that’s gotten less attention is that of local governments. Yet local governments, which represent the homes of the vast majority of people and sources of emissions, have uniquely influential power. 

Those powers include:

#1. Control over land use that governs the potential for efficient transportation choices and compact development;

#2. Ability to readily raise funding for communities for the broad public interest;

#3. Everyday communications with the public on matters of well-being and planning for the future;

#4. Hosting of public elections that provide a means to educate the public about key issues; 

#5. Jurisdiction over communities that represent the  scale of adaptation and mitigation projects that can be influential; and

#6. Relative physical accessibility as a public body to people.

#7. Standing to influence state governments.

#8. A natural center of organizing for national advocacy and movement-building.

Categories
Uncategorized

A “community” lens

Communities are cities, towns, neighborhoods, and counties.

A community is a place where people live near one another, interact, and go about life together.

People in a community share infrastructure and amenities, like streets, transit, water, parks, libraries. They share common problems and opportunities.

Communities are served by one or more local governments.

Communities are shaped by the people who set out to lead and improve them. Those with roles in local government of course, but also providers of housing and healthcare, representatives of groups and causes, teachers, journalists, faith leaders, small business owners, volunteers, and others.

Communities influence higher levels of government. They are also the places where much of the work of higher levels of government is carried out.

Categories
Uncategorized

Primer on access

In transportation and land use planning, access or accessibility is the ability for people to reach goods, services, and activities.

Another way to define access is people’s ability to meet opportunities, where opportunities are groceries, employment, education, healthcare, and other things they need and value.

A key component of access is mobility, the ability to move through physical space. Mobility is a means to access, but generally not a useful end itself. 

The words “access” and “accessibility” have other uses that are related but different. For example, in the context of people with disabilities, accessibility can refer to equity in mobility. 

Accessibility is also an important part of equity on general. Access in equity can refer to ensuring communities who have suffered and continue to suffer from historical injustices and exclusions now have what they need for well-being, including physical safety, nutrition, health, education, finance, and economic opportunities.

Access is fundamental to climate-resilient development and GHG mitigation.

Measurement

One of the contributions of the concept of access is that it provides a way to quantify the extent to which people can get what they need, and by extension, community health, well-being, and other public outcomes policymakers wish to pursue.

One way to provide access is reachability, or the capacity to physically reach opportunities. Reachability is comprised of the following:

#1. PROXIMITY: Physical distance between origins and destinations. The mix and breath of locations of key opportunities relative to people who need them. Proximity can be measured as the average time to reach one or a basket of key locations by a targeted or wider number of the population.

#2. MOBILITY: Ease or comfort of physical movement along a network. Metrics for mobility are well-established and include average travel speed and auto travel time abstracted from the impact of decisions on other travel modes. Here is a short talk by Jonathan Levine on conventional mobility measures and why they work when properly applied, but also lead us in wrong direction if we try to maximize for them without an organizing goal of accessibility.

#3 FREEDOM FROM BARRIERS: Removal of  impediments to using transport options. This includes affordability, safety, comfort, and other qualities that arise in different settings and with people’s needs. 

Another solution to access is connectivity, which means things coming to you. Connectivity could be for physical goods like water and delivery packages. It could also be digital resources like computing and communications which can (but doesn’t necessarily) provide cost-effective substitutes for physical travel. Connectivity could also be for fire and other emergency services.

In sum, access gives a way to measure meaningful outcomes and internal dynamics in a way that generally is currently lacking in transportation, land use, and related planning.

Practical Use

The idea of access as an integrated transportation and land use strategy brings some advantages. However it is not yet widely used by local governments, a fact that is explained partly by decades of auto-centric decisions in multiple levels of government that has created inertia.

Yet, access as a concept is available for local governments to use—and indeed, offers a way to leadership and innovation that could be valuable.

Some things the concept of access could do for a local government:

  • Create a unified way to measure, manage, and optimize resources across multiple modes and investments towards human-centered outcomes
  • Bring together various existing policy issues (e.g. commute times to work, availability of low-stress bikeways, wheelchair access, etc) into a single rubric.
  • Establish a focal point to integrate planning activities that are currently diffused and disparate (e.g., parking policy and TDM proposals), creating the potential for a more powerful and deliberate way to coordinate investments 
  • Provide a new way to evaluate equity with a higher degree of discernment and control in managing initiatives aimed to increase well-being in targeted populations.

In conclusion, access provides a way to understand and integrate the management of transportation and lanes use across modes and in urban, suburban, and rural environments.

Categories
Uncategorized

The fast road to a prosperous, climate-compatible future is better transportation choices 

The set of choices available for transportation—or more generally, “access to destinations” (or more generally still, “access to opportunities”)—is one of the most important determinants of our quality of life. It powerfully shapes our cost of living, the extent to which large numbers of people are able to satisfy their basic needs and reasonable standards of living, and the power of our local community,

Transportation choice is also a crucial determinant of climate outcomes. Transportation is one of the top main sources of greenhouse gas emissions (GHG) as well as one of the sources that has the most concerning trends. Furthermore it’s central to adapting to being resilient in the face of climate change.

And the state of transportation choices enables and is enabled by other economic systems that govern well-being and climate action like housing, energy, food, air quality, and the ability to secure valuable goods and services.

Some of the keys to creating good transportation choices:

1. Design for people

Think about and organize for transportation so that the programs and people involved with its planning, engineering, and operations are foremost responsible to solve human problems.

  • Focus metrics on satisfying human needs, in particular, enabling people to reach destinations and opportunities in an economically-efficient way safely.
  • Ensure people of all ages, abilities, and financial situations are able to effectively access destinations–and course-correct where that is currently not happening.
  • Establish a great “fabric” for active transportation (walking, biking, and rolling in other ways) to provide good options for people to come together and communities to be cohesive, while elevating the need to make urban areas places that work well for people to be outside of cars.
  • Highly value the experience of people in neighborhoods and communities that the transportation systems flow through, minimizing preventable stress, danger, noise, and other problems vehicle traffic can impose.
2. Multiple mobility solutions

Create an ecosystem that works for a diversity of travel modes and travel alternatives.

  • Make communities conveniently and comfortably walkable, bikeable, and connected with excellent transit, both within themselves and to/from other places.
  • Create the flexibility to satisfy people with different needs, including the people whose needs change expectedly and unexpectedly throughout the year, month, work, day, and life events.
  • Coordinate systems so users can effectively link different modes on the same trips.
  • Support alternatives to mobility like remote meetings/work and efficient deliveries.
3. Systemwide efficiency

Allocate investments, rights, privelages, and space to transportation systems that achieve the greatest outcomes for the resources used.

  • Design communities to be space-efficient by reducing the distances between endpoints, especially housing and destinations, so people can live near where they need to go, comfortably travel by walking and biking, and access good social connections and desirable chance encounters.
  • Build systems to enable high-efficiency electric vehicles like neighborhood electric vehicles and e-scooters.
  • Dedicate systems and accountability to continuous improvement, with transparent reporting and planned responses to problem data (including people killed and seriously injureed in/around transportation systems) and the gap between key current states and targets.
  • Meaningfully invest in structured continuous improvement, innovation, and technology advancement.
Categories
Uncategorized

To live better and secure crucial climate action, deliver tested wellbeing solutions

It’s within reach to live well and secure crucial climate action—making both happen is a matter of delivering tested solutions to improve collective wellbeing.

Here are some of the top such wellbeing solutions according to evidence:

Choices

Develop economic choices that allow people to make ends meet and live the life they want. Deliver choices by creating affordable and enriching options to help people in a wide range of ages, abilities, wealth/incomes, and backgrounds to meet their basic needs through:

  • Housing, especially infill middle housing;
  • Transportation, especially walkability, bikeability, and rich transit;
  • Food, especially nutritious plant-rich food; and
  • Energy, especially innovations in efficiency combined with beneficial electrification.

Delivering choices is associated with “demand-side” climate solutions, representing 40–70% of potential greenhouse gas (GHG) reductions. This category also contains some of the most cost-effective measures to reduce emissions that have been studied, which means they save energy and money that can be reinvested and multiply results.

Delivering choices also boosts self-reliance and flexibility to help people have the best chance of being ready for life-changing disasters that are becoming more common, asd well as to cope with the shocks, shifts, and uncertainties of climate change more generally.

Clean air

Keep outdoor and indoor air clean and safe to breathe, especially by curbing air pollution impacting children and other sensitive and vulnerable populations. Deliver clean air through:

  • Transition of mobile and fixed sources of energy systems to being renewably-powered and electrified;
  • Reduction of system-wide energy use through demand management and compact-oriented land use strategies; and
  • Development of strong industrial controls.

Delivering clean air is a powerful way to reduce GHG emissions, since more than 75% of these emissions come from fossil fuels that cause regional, local, and indoor air pollution. Air pollution and GHG emissions also come from livestock, fertilizers, land clearing, and industrial processes.

Delivering clean air is also important for adapting to climate change because air pollution is more dangerous during heatwaves, wildfire smoke can be transported over long distances, and air pollution is particularly harmful for people who are already vulnerable.

Community cohesion

Develop community infrastructure and services to support strong social connections, where children, seniors and people with disabilities can travel independently, people with different racial, economic, and other backgrounds are integrated, and communities can efficiently and effectively solve collective problems together. Deliver community cohesion through:1

  • Creation of compact, mixed-use design with urban forestry and urban villages where commonly used services are accessible without driving;
  • Great conditions for walking and bicycling, as part of which, vehicle speeds are overall slow (e.g., under 20 mph on local streets and less than 30 mph on urban arterials), parking capacity and subsidies are minimal;
  • Streets, parks, other public facilities, and local public schools are widely attractive; and
  • Shared resources to efficiently and effectively manage environmental challenges, including natural infrastructure and cooling centers and knowledge-sharing about changes under way and resources to help people and neighborhoods adapt.

Delivering community cohesion enables large-scale GHG reduction because it comes through designing communities to be transformationally more resource-efficient, in part by reducing the extraordinarily energy-intense process of urban sprawl, and it multiplies the possibilities of the solutions mentioned in the previous two sections.  Related movements include Smart Growth and New Urbanism.

Delivering community cohesion is important for adapting to climate change for similar reasons: It allows local governments to accomplish more with less, and it leads to neighbors being more responsive in crises–which, with climate change, often occur at the scale of communities. It also makes local governments more flexible, able to create more shared infrastructure for shared problems, and more likely to provide safety nets when needed and preventatively address root causes

Responsive government 

Dedicate government, especially local government, to provide outcome-driven wellbeing for everyone in the most efficient way, dynamically and accountably. Deliver responsive government through the following:

  • Realizing full, representative participation in voting, civic life, and other influential decision-making processes, especially for marginalized groups;
  • Managing for all ages, abilities, and backgrounds, for today and tomorrow; 
  • Commitments to using resources productive by dedicating to using best, modern practices, knowing what those are, creating space for organized innovation, and delivering services effectively; and
  • Establishing the capacity to change, or the resources, knowledge, and willingness to conduct change management—and use it.

Delivering responsive government is foundational to reducing GHG emissions because most of the transitions involved require structural changes led through public policy, and there exists extraordinary inertia that makes the existing ways of doing things–including the processes that have led to climate pollution in the first place–stable and difficult to change. The climate challenge also demands greater participation and coalition building that in turn requires a strong hand and effective participatory processes that governments are best suited to provide. And the work to be done requires acting out of comfort zones, including in terms of pace, so responsiveness is needed to create accountability to deliver on outcomes in practice.

Delivering responsive government is needed for adaptation for similar reasons, and furthermore to stay on guard as the planet changes and to respond accordingly, to change practices and strategies, to inform and educate the public about those changes and responses, to monitor and address maladaptations, and to assert collective approaches when needed.

References

1 https://www.vtpi.org/cohesion.pdf

See also the Moreworks bibliography

Categories
Uncategorized

It’s reasonable to expect to live well

With the high level of technology and financial resources of the United States, we can and should expect our citizens–all of us–to have what we need to thrive.

That means people of all ages, abilities, wealth/incomes, and backgrounds should have the conditions to achieve liberty, security, and good health.

Liberty   

Everyone should have the ability to live as they want and pursue fulfillment. That includes: 

  1. Right to shape government and full and equal access to public services;
  2. Ability to choose one’s way of life, follow one’s dreams, and have individual control of decision making;
  3. Freedom to move where and as one wants;
  4. Freedom from violence and other unjust harm (a.k.a. “security of person”); and
  5. Access to buildings, products/services, and environments that are universally accessible (a.k.a. “universal design”).

Security 

Everyone should be able to build financial and other resources and expect their future is reasonably safe from shocks that threaten their way of life. That includes: 

  1. Ability to build durable wealth and a rewarding career; 
  2. Ability to prepare for disasters and dangers while keeping valuables safe;
  3. Ability to build and maintain close family and community networks, including physically-near intergenerational living arrangements; and
  4. Reasonable assistance and protections against significant stressors and setbacks, including around the events of having children, aging, and dealing with unexpected challenges such as costly health problems, loss of a job, and loss of one’s home.  

Good health

Everyone should be able to live a physiologically-full life free of unnecessary dangers and stressors, fully benefiting from the advances in modern public health and medicine. That includes: 

  1. Ability to access safe shelter allowing adequate sleep and rest;
  2. Ability to have healthy natural movement in their daily life; 
  3. Freedom from exposure to unnecessary dangers resulting from public planning and policy, including toxic pollutants and violence from structural design;
  4. Ability to have affordable good nutrition; 
  5. Ability to physically access settings to experience connections with other people, build relationships, and achieve belonging; and
  6. Ability to access affordable high-quality preventive and treatment services to maintain and improve physical, behavioral, and emotional health, including for those in crisis.

In sum, we can and should hold policymaking and other development accountable to providing the conditions for liberty, security, and good health.

References

1 https://www.un.org/en/about-us/universal-declaration-of-human-rights

See also the Moreworks bibliography

Categories
Uncategorized

E-bikes give bicycles superpowers

Electric bicycles (e-bikes) multiply humans’ ability to pedal and balance. If you’ve used one, you have experienced bionic power. In case you’ve haven’t, read on for an explainer.

In short, a powerful small electric motor delivers three basic enhancements. Then, at the hands (and feet) of a person, those enhancements make the bicycle—already one of the most efficient machines in the universe— easier to manage and more powerful.

Three Enhancements 

The e-bike adds battery-electric power assistance to the drivetrain of a conventional bicycle. This delivers three kinds of enhancements to a bicycle:

First, it increases the rider’s power output. A typical human pedaling with legs typically delivers 20-200 of watts to a bicycle. The low end is working gently on flat ground and the high side is pushing uphill.

A battery-electric system stacks 250-1000 watts on top of that, depending on the model and power selection. Electric assistance means more power going to the bike for a given amount of effort from the human.

Second, it delivers explosive starting power. In addition to general power assistance, electric motors can immediately put a bicycle into motion in nearly any condition (e.g., under load or on a hill) with little or no effort to the pedaler.

This capability is inherent to electric motors and popularly called “instant torque” with electric cars. On a bicycle, it provides explosive launching power that can completely absorb the difficulty and fatigue involved with starts, which can be the most physically-demanding aspect of using a bicycle for transportation.

Third, it creates the option of throttle-only power. Some e-bikes, specifically, Class 2 e-bikes, carry a handlegrip throttle that delivers exclusive power assistance–in other words, power from the motor alone without pedaling.

This feature is similar to the throttle on a motorcycle, but with a low top speed. For most e-bikes with throttle-only power, assistance will cease when the bike reaches 20 MPH. 

Superhuman Abilities

So now that we have a performance-enhanced bicycle, how does the extra oomph translate to the work of actually riding?

The answer is that in nearly every aspect requiring physical effort, the bike now gives its rider superpowers. 

The new abilities include:

Distance: On an e-bike, a rider can cover 2-3 times the distance using the same amount of physical effort. Mileage may vary depending on the terrain, rider, and other factors. But in general, whatever distance or radius the operator of a conventional bike considers a comfortable travel range, it is now significantly larger.

Hills: A rider can choose to erase the challenge of most hills, from making the climb of a slope previously thought unmanageable into something comfortable to eliminating the effort needed for one or more hills on a route altogether. While the rider is subject to the constraints of the maximum output of a particular motor and the level of battery charge, in practice they are unlimited by grades designed for motor vehicles and 80% of the trips drivers take in cars.

Load: A rider can carry a surprisingly large amount of cargo weight on board (e.g., a standard longtail cargo bike might support 400 lbs), towed in a trailer (additional 100 pounds or so), or both with essentially zero extra physical exertion. Such cargo can be nearly anything, from a keg of beer to a Christmas tree to multiple children or even adult passengers. By the same principle, the rider can eliminate the force of headwind.

Ease: Just as power assistance can allow a rider to “do more” with the bicycle, it can also let them do less. Meaning, a bicycle operator can cover the same distance or terrain they did previously on a pedal-only bike, but with less strain. Or more to the point, without sweating. For some riders, this can make riding a bicycle for transportation finally feel compatible with dressing up for work or commuting in hot summer months.

Swiftness: One of the subtly extraordinary benefits of “Instant torque” is the ability to comfortably maneuver environments that require athletic starts, such as a series of uphill stoplights, with almost no physical exertion. In areas with heavy vehicle traffic and frequent intersections, this power can make the bicycle, already almost impervious to congestion, significantly faster and more enjoyable than traveling by car.

Speed: Electric assistance can bring the top speed of a bike to double or more what an average person can comfortably travel pedaling on their own (i.e., 20 vs 10 MPH). This can translate to the ability–and confidence–to traverse high-stress corridors like narrow bridges where the rider has to mix with cars, or unprotected bike lanes on fast-moving roads, in which the rider feels it necessary to get in and out as quickly as possible.

Balance: With electric bicycles that have throttle assistance, (in other words, Class 2 e-bikes), a rider has new capabilities to safely navigate hazardous conditions such as icy spots by being able to take their feet off the pedals and hold them out for balance while continuing to propel the bike forward.

Together, these abilities transform the conventional pedal-only bicycle into something categorically easier to manage and more powerful. 

Categories
Uncategorized

Research summary: IPCC’s sixth synthesis report says climate action requires transforming transportation

On March 20, 2023, the Intergovernmental Panel on Climate Change (IPCC) provided a major update on the state of climate science and ways forward in its synthesis of the Sixth Assessment Report (AR6).

Here’s what the world’s top authority on climate says about climate action and transportation:

#1. Climate change is an unfolding catastrophe.1 It multiplies the most problematic existing societal challenges and it exacerbates inequalities. Pretty much no one is left unscathed.

#2. We can head off continued warming and prepare for the unavoidable by making major coordinated commitments–which is manageable.2

#3. In fact, climate action is an opportunity to create abundance.3 The solutions called for are largely centered in creating more inclusive, affordable, healthy, and joyous communities that make people better off. Sustainable and equitable development worth doing even without the benefits of decarbonization. 

#4. Rising to the challenge means rapid, broad, and deep decarbonization of our energy supply plus five principal “demand-side” areas: Food, buildings, industry, electrification, and land transportation.4 Emissions in all areas need to rapidly peak, decline, and move to nearly zero by 2050-2070.

#5. Decarbonizing transportation requires several transformations:

  • Energy-Efficient Mobility Systems:5 Improving per-passenger energy productivity through development of systems to prioritize the widespread use of transit and other shared vehicles, vehicles right-sized for their purpose, and active transportation (e.g. bicycling and walking), meanwhile decreasing the distance between where people and things need to travel. Methods include safe streets for people outside of vehicles, more advanced public and community-based shared transportation, redesign of transportation for accessibility rather than car flow, inclusive housing, and inclusive use of public spaces. 
  • Resource-Efficient Electrification:6 Electrifying nearly every vehicle with wheels and a motor, while stewarding resources to create the most decarbonization for the materials employed. Methods include switching internal combustion engines with electric powertrains of existing vehicles in every class (e.g. cars, buses, and trucks), using the superior technology of battery-electric systems to advance new classes of highly-efficient small vehicles in urban areas (e.g. scooters and neighborhood electric vehicles), and creating new capabilities for active transportation (e.g. e-bikes). 
  • Compact Land Use: Dense infill mixed-use middle housing that lets people live near where they need to go). This strategy reduces fuel use, enables shifts to s’more energy-efficient modes, and enables day-to-day living is overall more resource-efficient and has a lighter climate impact.
  • Rigorous Demand Management:7 Creating economic incentives to reward climate-compatible travel and contain the impact of vehicles and behaviors that are in conflict with decarbonization. Methods include programs of incentives for users making everyday travel choices and capital purchases (e.g. expanded use of transportation demand management or “TDM” initiatives), structural reforms (e.g. reorganizing subsidies to move beyond car-centric planning to interoperable multimodal systems, as well as ensuring public agencies have sufficient capacity and resources to conduct such work), and new creativity in public engagement (e.g., entrepreneurship to enhance user experiences, communication, and education).

#6. Everyone has a job to do.8 Climate action around transportation requires comprehensive support for activities as varied as public policy design, advocacy, organizing, technology deployment, education, applied research, and more. Those who have influence over urban areas and financial investments taking place are especially important. Leadership is contagious.

#7. Everything we can still do matters.9 Each increment of warming avoided can make an enormous difference.


1  From the IPCC’s published Headline Statements (Headlines), Summary for Policymakers (SPM), and Longer Report (LR). As of March 22, the full volume has not yet been published. Additional detail is available in the three reports the synthesis is based on, especially the 2022 report on Mitigation.

2  Climate change is a threat to human well-being and planetary health. (Headlines C.1). Climate change has reduced food security and affected water security, hindering efforts to meet Sustainable Development Goals (SPM A.2.4). Continued emissions will further affect all major climate system components, and many changes will be irreversible on centennial to millennial time scales and become larger with increasing global warming. Without urgent, effective, and equitable mitigation and adaptation actions, climate change increasingly threatens ecosystems, biodiversity, and the livelihoods, health and wellbeing of current and future generations. (C.1.3)

3 There is a rapidly closing window of opportunity to secure a liveable and sustainable future for all. (Headlines C.1) All global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot, and those that limit warming to 2°C (>67%), involve rapid and deep and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade. (SPM B.6). Low-cost decarbonization opportunities abound. (SPM Figure SPM.7.a)

4  Negative decarbonization opportunities abound. (SPM Figure SPM.7.a). Deep, rapid and sustained mitigation and accelerated implementation of adaptation actions in this decade would reduce projected losses and damages for humans and ecosystems (very high confidence), and deliver many co-benefits, especially for air quality and health (C.2) Mitigation options often have synergies with other aspects of sustainable development, but some options can also have trade-offs. There are potential synergies between sustainable development and, for instance, energy efficiency and renewable energy. Similarly, depending on the context, biological CDR methods like reforestation, improved forest management, soil carbon sequestration, peatland restoration and coastal blue carbon management can enhance biodiversity and ecosystem functions, employment and local livelihoods. However, afforestation or production of biomass crops can have adverse socio-economic and environmental impacts, including on biodiversity, food and water security, local livelihoods and the rights of Indigenous Peoples, especially if implemented at large scales and where land tenure is insecure. Modeled pathways that assume using resources more efficiently or that shift global development towards sustainability include fewer challenges, such as less dependence on CDR and pressure on land and biodiversity (B.6.4)

5  Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep and sustained emissions reductions and secure a liveable and sustainable future for all. (Headlines C.3) All global modeled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot, and those that limit warming to 2°C (>67%), involve rapid and deep and, in most cases, immediate greenhouse gas emissions reductions in all sectors this decade. Global net zero CO2 emissions are reached for these pathway categories, in the early 2050s and around the early 2070s, respectively. (Headlines B.6)

6 SPM Figure SPM.7.a

7 Urban systems are critical for achieving deep emissions reductions and advancing climate resilient development. Key adaptation and mitigation elements in cities include considering climate change impacts and risks (e.g. through climate services) in the design and planning of settlements and infrastructure; land use planning to achieve compact urban form, co-location of jobs and housing; supporting public transport and active mobility. (SPM C.3.4) Public transportation with bikes and rightsizing motor vehicles are among top 20 key modeled areas of mitigation, and the 5th (nearly tied with 4th) and 3rd-highest sources of mitigation that are cost-negative. (SPM Figure SPM.7.b) Urban systems are critical for achieving deep emissions reductions and advancing climate resilient development, particularly when this involves integrated planning that incorporates physical, natural and social infrastructure (high confidence). Deep emissions reductions and integrated adaptation actions are advanced by: integrated, inclusive land use planning and decision-making; compact urban form by co-locating jobs and housing; reducing or changing urban energy and material consumption; electrification in combination with low emissions sources; improved water and waste management infrastructure; and enhancing carbon uptake and storage in the urban environment (LR 4.5.3)

8 Electric vehicles powered by low-GHG emissions electricity have large potential to reduce land-based transport…The environmental footprint of battery production and growing concerns about critical minerals can be addressed by material and supply diversification strategies, energy and material efficiency improvements, and circular material flows. (SPM C.3.3)

9 Reducing industry GHG emissions entails coordinated action throughout value chains to promote all mitigation options, including demand management, energy and materials efficiency, circular material flows, as well as abatement technologies and transformational changes in production processes. (SPM C.3.3) The systemic change required to achieve rapid and deep emissions reductions and transformative adaptation to climate change is unprecedented in terms of scale, but not necessarily in terms of speed. Systems transitions include: deployment of low- or zero-emission technologies; reducing and changing demand through infrastructure design and access, socio-cultural and behavioral changes, and increased technological efficiency and adoption; social protection, climate services or other services; and protecting and restoring ecosystems. Feasible, effective, and low-cost options for mitigation and adaptation are already available. (SPM C.3.1) Electrification load brings significant new impacts that need to be reduced (SPM Figure SPM.7.b) Transport-related GHG emissions can be reduced by demand-side options and low-GHG emissions technologies. Changes in urban form, reallocation of street space for cycling and walking, digitalisation (e.g., teleworking) and programs that encourage changes in consumer behavior (e.g. transport, pricing) can reduce demand for transport services and support the shift to more energy efficient transport modes. (LR 4.5.3) Approaches that align goals and actions across sectors provide opportunities for multiple and large-scale benefits and avoided damages in the near-term. Such measures can also achieve greater benefits through cascading effects across sectors (medium confidence). For example, the feasibility of using land for both agriculture and centralized solar production can increase when such options are combined (high confidence). Similarly, integrated transport and energy infrastructure planning and operations can together reduce the environmental, social, and economic impacts of decarbonizing the transport and energy sectors (high confidence). (4.9) 

10 Urban systems are critical for achieving deep emissions reductions and advancing climate resilient development.  SPM (C.3.4) Finance, technology and international cooperation are critical enablers for accelerated climate action. (SPM C.7) 

11  There are gaps between projected emissions from implemented policies and those from NDCs and finance flows fall short of the levels needed to meet climate goals across all sectors and regions. (Headlines A.4). Every increment of global warming will intensify multiple and concurrent hazards. (Headlines B.1)

12  Climate change is a threat to human well-being and planetary health. There is a rapidly closing window of opportunity to secure a liveable and sustainable future for all. Climate resilient development integrates adaptation and mitigation to advance sustainable development for all, and is enabled by increased international cooperation including improved access to adequate financial resources, particularly for vulnerable regions, sectors and groups, and inclusive governance and coordinated policies. The choices and actions implemented in this decade will have impacts now and for thousands of years (SMP C.1). Delayed mitigation and adaptation action would lock-in high-emissions infrastructure, raise risks of stranded assets and cost-escalation, reduce feasibility, and increase losses and damages (high confidence). Near-term actions involve high up-front investments and potentially disruptive changes that can be lessened by a range of enabling policies. (C.2)

Categories
Uncategorized

Primer on transitions for climate resilience

Climate-resilient development means changing how our systems work so people can thrive as the climate changes. The Intergovernmental Panel on Climate Change (IPCC) calls these changes transitions. 

A transition is a coordinated shift in technology and infrastructure, in rules and institutions, in finance and markets, in skills and social norms, in ecosystem stewardship, and in how we use knowledge to decide and act. These shifts point in one direction. Lower emissions and lower risk. They are learning processes. They center equity and justice. They reflect local context to avoid fixes that raise risk elsewhere or later.

After a transition, emissions are structurally lower. Energy, mobility, water, food, and health services hold up better during heat, floods, fire, and storms. Systems have more redundancy and diversity so one failure does not cascade. Nature is healthier and acts as a buffer. Access is fairer and the most exposed people are safer.

How fast this can happen varies. Policy and finance can pivot within one to five years and must stay the course. End use technologies and fleets turn over in five to twenty years. Energy supply and grids often take ten to thirty years to rebuild. Urban form and major infrastructure can take twenty to fifty years or more. Ecosystem recovery and coastal reconfiguration often take decades. Acting this decade keeps options open and avoids lock in.

Energy

The energy transition cuts waste, electrifies end uses, and scales clean supply. Efficiency lowers demand in buildings, industry, and devices. Electrification moves heating, cooking, and many industrial processes to clean power. Renewables, storage, flexible demand, and modern grids become the backbone. Unabated fossil fuels decline. Grids become more resilient and smarter, with a mix of large interconnections and distributed resources like rooftop solar, batteries, and microgrids. Siting and design account for heat, wildfire, and flood. The transition supports workers and regions that depend on fossil fuels and expands affordable clean energy access.

Transportation

Mobility changes through avoid, shift, and improve. We reduce unnecessary travel with better land use and digital access. We shift more trips to public transport and active modes that are safe and convenient. We improve vehicles and fuels. Electric vehicles grow quickly as grids decarbonize. Freight uses more rail where feasible. Aviation and shipping focus on efficiency and sustainable fuels where electrification is harder. Transport networks withstand heat, flood, and storms through better materials, elevation, rerouting, and redundancy.

Urbanism 

Cities grow in ways that cut emissions and reduce risk. Compact, connected, mixed use neighborhoods shorten trips and support transit and walking. Buildings are efficient, well insulated, and designed for heat and smoke. Blue green infrastructure adds trees, parks, wetlands, and permeable surfaces that cool and absorb water. Land use, transport, water, and waste planning are integrated. Circular systems reduce waste and reuse water and materials. Emergency services have reliable access during extremes. Critical services can be decentralized when that improves reliability. Equity sits at the center through inclusive planning, slum upgrading, tenure security, and universal basic services for water, sanitation, cooling, and mobility.

Agriculture, water, and ecosystems

Food systems face rising heat, drought, flood, pests, and price shocks. The transition puts food and farm resilience up front. Farmers diversify crops and livestock, use agroecology, improve soils, harvest and store water, and use climate services for decisions. Cold chains, storage, and logistics reduce losses. Diets move toward healthy, sustainable options and food waste falls, which eases pressure on land and water. Water is managed across whole basins with demand management, nature based storage, reuse, and risk reduction for droughts and floods. Forests, wetlands, grasslands, rivers, and reefs are protected and restored, and landscapes stay connected so species can move. Coasts plan for rising seas with setbacks, buffers, and ecosystem based protection such as mangroves and reefs. Where risk becomes too high, managed retreat lowers harm. Indigenous rights and knowledge are respected and benefits and risks are shared fairly.

Health, livelihoods, and social protection

People face heat, disease, smoke, and displacement. Health systems prepare with heat action plans, climate informed primary care, and early warning that reaches every household. Safety from wildfire and other disasters is explicit in plans. Communities have clean air shelters, HEPA filtration, and N95 distribution for smoke. Hospitals, clinics, and schools have backup power and cooling. Evacuation routes, alerts, and shelters are accessible for people with disabilities, older adults, and families with young children. Programs harden homes against fire and storms and support retrofits for cooling and air quality. Universal access to water, sanitation, and hygiene reduces disease risk. Social protection cushions shocks through cash transfers, public works, insurance, and programs that scale automatically during disasters. Livelihoods diversify and education builds skills for new jobs. Mental health support is available after disasters.

Finance and governance

Money, rules, and skills enable everything above. Public and private finance scale up and shift toward mitigation and adaptation. Adaptation finance gaps close, especially in low income and climate vulnerable regions. Disclosure and pricing of climate risk become standard. Risk pooling and instruments for loss and damage expand. Governance is inclusive and multi level so communities, cities, regions, and nations work in concert. Decisions use scenarios and stress tests to manage uncertainty. Knowledge is co-produced with local and Indigenous communities. Education and workforce programs spread the skills needed for a just transition.

What success looks like 

If we are on track, emissions will fall. Losses from climate hazards stop rising as quickly even as hazards grow. Access to energy, mobility, cooling, water, food, and health improves. Exposure of high risk groups declines. Ecosystems recover and provide stronger services like cooling, flood control, and carbon storage. Investment patterns, institutions, and daily choices reinforce these gains rather than undermine them.

References

IPCC (2022). Climate Change 2022 Summary for Policymakers. Working Group II Sixth Assessment Report. https://www.ipcc.ch/report/ar6/wg2/

IPCC (2023). AR6 Synthesis Report. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/syr/

Schaeffer R et al. (2025). Ten new insights in climate science 2024. One Earth. https://www.sciencedirect.com/science/article/pii/S2590332225001113

FAO (2021). The State of Food and Agriculture 2021. Making agrifood systems more resilient to shocks and stresses. Food and Agriculture Organization of the United Nations. https://www.fao.org/publications/sofa/2021/en/

Lancet Countdown (2024). 2024 report of the Lancet Countdown on health and climate change. The Lancet. https://www.lancetcountdown.org/2024-report/

Categories
Uncategorized

To secure crucial climate action, focus on resilience

What is climate action?

According to the Intergovernmental Panel on Climate Change (IPCC), which is the most widely-accepted international scientific body on climate change, when we think about climate action, we should think climate-resilient development.1

Climate-resilient development means deeply reducing greenhouse gas emissions (“mitigation”) while dealing with the changing climate already coming at us (“adaptation”) and doing both in a way that supports sustainable development for everyone.

Mitigation

Mitigationmeans reducing greenhouse gas emissions.2 The magnitude of reduction needed is associated with limiting global warming by as close as possible to 1.5C (2.7F) degrees. Overall that means reducing half of global emissions from the period of 2023 (IPCC’s most recent major update) by 2030.

The US’ likely best ways to support that transition, as evaluated in 2024 by the Biden adminstration, are to (1) decarbonize the energy sector (focusing on cutting energy waste; shifting to carbon pollution-free electricity; electrifying and driving efficiency in vehicles, buildings, and parts of industry), (2) reduce emissions from forests and agriculture and enhancing carbon sinks, and (3) reduce non-CO2 greenhouse gases including methane, hydrofluorocarbons, and other potent short-lived climate pollutants.

For the US to carry its fair share, it needs reduce its emissions by about half from 2024 to 2030, or about 6,400 metric tons of carbon dioxide equivalents (MtCO2e), according to Climate Action Tracker, which monitors and evaluates countries’ commitments.

The US’ actual commitment as of November 2024 (per its nationally-determined contribution submitted to the UN Framework Convention on Climate Change) was about 22-28% for the period of 2024 to 2030. 3

Adaptation

Adaptationmeans adapting to the changes underway. It also specifically means avoiding maladaptation, or in other words, responses that worsen existing inequities, especially for Indigenous Peoples and marginalized groups, or that hurt ecosystem and biodiversity resilience.

Adaptation is a process that can take place over the range of multiple timescales, from nearer term to longer term, and really any physical level, from the whole human civilization on down.

Sustainable development for everyone

Sustainable development for everyone means centering justice, equity, and inclusion in investments and other commitments in order to avoid perpetuating historical and ongoing injustices, inequities, exclusions, and that reconcile divergent interests, values and worldviews toward equitable and just outcomes for all.

Sustainable development for everyone specifically involves building a just transition, or managing the shift to a low-carbon economy in a way that is fair and inclusive, ensuring that no one is left behind.

Such responses work more broadly to meet, and ideally create synergies with the UN sustainable development goals (SDGs).

The three processes of mitigation, adaptation, and sustainble development for everyone together can be considered “climate-resilient development.”

The three aspects are related and affect each another. For example, initiatives that aim to support mitigation need to be adaptable to a heating climate or they could fail. Also, a community’s needs for adaptation are a function of how much warming is prevented by mitigation. And responses that are just, equitable, and inclusive are likely to strengthen the possibilities for mitigation and adaptation.

References

1 Intergovernmental Panel on Climate Change (2023). AR6 Synthesis Report: Climate Change 2023. https://www.ipcc.ch/report/sixth-assessment-report-cycle/

2 https://globalecoguy.org/we-need-to-see-the-whole-board-to-stop-climate-change-98be66412281

3 https://climateactiontracker.org/countries/usa

Click to access United%20States%20NDC%20April%2021%202021%20Final.pdf

The US commitment is to reduce emissions from 2005 levels (7.4 gt total and 6.7 gt net) by about half (50-52%) by 2030. The US is projected to achieve about half of that reduction (26-28%) by 2025.

Intergovernmental Panel on Climate Change (2022). Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel. See especially Technical Summary. https://www.ipcc.ch/report/ar6/wg3/

See also the Moreworks bibliography

Categories
Science

Transportation questions for climate advocates

To bring climate pollution under control, we need to reshape transportation, especially the way we get around on the ground.

Namely, we have to evolve from a mono-modal system that is extraordinarily energy-intensive because it requires one tool for almost every job–the private car, typically carrying one person–towards a system that is resource-efficient.

No question a big part of resource efficiency is more efficient motors with cleaner energy sources. That means electrifying more or less every motor vehicle.

But just as important, and what we needs more attention, is making the system architecture into one that is multimodal. An architecture that provides a diversity of travel choices giving people multiple good options. That ferrets out subsidies working against the most economic travel tool for the job in order to give the most climate-compatible modes a level playing field. That multiplies the possibilities through “geometric efficiency”–by designing and redesigning communities to give people more amenities near where they live.

This system we need is one that is designed to first avoid the need for physical travel and next let people frictionlessly shift to the most efficient and convenient mode for the trip. See figure for a summary of these strategies, together “avoid/shift,” in context.

Avoid-Shift-Improve Framework from SLOCAT (reference at bottom)

Four questions will shape how and when we get to the multimodal, resource-efficient system that we need–and whether transportation leaders will do their part in delivering a safe climate:

  1. How do we give bicycle/pedestrian and transit development the high status climate science and literature on equity say they deserve?
  2. How can transportation electrification and “avoid/shift” climate strategies work harmoniously towards a holistic transportation decarbonization agenda?
  3. What’s it going to take to get public agencies to take serious climate action, which requires–according to the most authoritative science–a revolution in mobility options on top of electrification?
  4. How can resource-limited local governments rapidly take it the next level for combined transportation decarbonization, equity, and resilience?
  5. How do we overcome carbon lock-in that makes the transportation difficult and spark new action?

There’s a lot packed in here. How we pay for things (and quietly subsidize the status quo). The role of emerging technology. Paths to diffusion of technology and solutions that already exist but at small scale. How to be more appropriately imaginative. And more.

Watch this space for materials and perspectives to explore these issues. A goal is to better understand the untapped value mobility offers the climate movement and what we can do about it. As well as the potentially untapped popular support for initiatives that give people time, money, and freedom back once we get the flywheel really moving.

READING

IPCC (April 2022). Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel.

Litman, Todd (2022). Evaluating Transportation Equity Guidance for Incorporating Distributional Impacts in Transport Planning. Victoria Transport Policy Institute.

SLOCAT: Partnership on Sustainable, Low Carbon Transport (2021). Transport and Climate Change Global Status Report — 2nd Edition.

Unruh, Greg (2002). Escaping Carbon Lock-in. Energy Policy.

Categories
Uncategorized

Primer on subnational climate action

Subnational climate action means everything that happens below the federal level. Cities, counties, regional agencies, states, multi state coalitions, and interstate institutions set rules and invest public dollars.

Subnational policy shapes markets, unlocks private capital, and builds the record that supports durable national standards. It spreads a few ways.

First, it creates working examples. A city or state proves a rule or program can work, then peers copy it and vendors standardize around it.

Second, it builds markets that lower costs. Public procurement and utility programs create steady demand that pulls in manufacturing and finance.

Third, it uses planning and permitting authority to direct dollars and projects.

Fourth, it establishes a technical and legal record that supports stronger federal standards later. The result is a set of local and regional moves that add up to national behavior long before a federal rule arrives.

Cities and counties

Cities and counties control land use, zoning, building codes, building performance standards, and permitting. Building performance standards, often shortened to BPS, set energy or emissions limits for large buildings and drive demand for heat pumps, smart controls, and retrofits. Local governments run fleets and buy buses, trucks, and construction materials. Electrification ready codes and streamlined permits reduce soft costs and speed adoption.

Local action can also advance national practice when done together. Cities can adopt common templates for electric vehicle ready requirements, clean construction, and benchmarking. They can pool purchases of buses and trucks, share compliance tools and data, and align timelines. When many cities move in concert, vendors face one clear set of expectations, which speeds product development and lowers costs across the country.

Intrastate (or “sub-state”) regional agencies

Metropolitan Planning Organizations, known as MPOs, program federal transportation dollars through long range plans and a Transportation Improvement Program, called a TIP. Plans must conform to the emissions budget in the State Implementation Plan, or SIP. Some states also set greenhouse gas targets for MPOs. When MPOs shift funds toward transit, maintenance, safe streets, managed lanes, and charging depots, vehicle miles traveled, or VMT, grows more slowly and fleets electrify faster.

Transit agencies operate bus and rail systems and manage large depots and right of way. They plan service, buy vehicles, install chargers and grid upgrades, and coordinate street design with cities and MPOs. Major procurements of zero emission buses and charging equipment create predictable demand that manufacturers serve nationwide. Service that is frequent, reliable, and safe also reduces driving, which cuts emissions and improves local air quality.

Air quality management districts write rules and permits that feed into the SIP under the federal Clean Air Act. They target nitrogen oxides, called NOx, and volatile organic compounds, called VOCs, to meet health standards. Many regulate pollution from freight hubs through indirect source rules for warehouses, ports, and airports, and through tighter limits on combustion equipment. Because logistics networks operate across state lines, strong rules in major hubs push markets for zero emission trucks, cargo handling equipment, and cleaner industrial heat across the country. These rules also generate data and legal precedent that support stronger Environmental Protection Agency standards later.

States and utility regulators

States set greenhouse gas targets and pass laws that require cleaner electricity such as a Renewable Portfolio Standard or a Clean Electricity Standard. They update building codes and BPS, adopt appliance standards, regulate methane and industrial emissions, and manage siting for energy projects. States deploy funding from the Infrastructure Investment and Jobs Act and the Inflation Reduction Act, often written as IIJA and IRA. Many run green banks and use public purchasing through Buy Clean programs that prefer lower carbon materials.

Public Utility Commissions and Public Service Commissions, often shortened to PUCs and PSCs, regulate utilities. They approve resource plans, transmission and distribution upgrades, interconnection reforms, demand side programs, and rates. Early state action proves feasibility and lowers costs. PUC decisions unlock large clean power builds and improve reliability, which reduces national prices and risk for private investors.

Multistate coalitions and agreements

Governor led coalitions such as the United States Climate Alliance and sector agreements on zero emission cars and trucks align targets, timelines, and model policies. Harmonized rules reduce compliance friction, speed replication across states, and signal a stable market to investors and manufacturers.

Interstate regional agencies

Regional Transmission Organizations and Independent System Operators, known as RTOs and ISOs, operate wholesale power markets and plan transmission under the Federal Energy Regulatory Commission, or FERC. They manage interconnection queues and resource adequacy. Stronger regional transmission, better queue management, and fair rules for storage and demand response enable gigawatt scale clean energy additions across multiple states. These changes lower costs for wide areas and make federal standards easier to implement.

Interstate carbon and fuel markets also create durable price signals. The Regional Greenhouse Gas Initiative, or RGGI, caps power sector carbon dioxide across several Northeast and Mid Atlantic states and invests allowance revenue in clean energy and efficiency. The Western Climate Initiative links California and Qu├ębec in a cap and trade system that covers multiple sectors. Low Carbon Fuel Standard programs, or LCFS, in California, Oregon, and Washington create credits for lower carbon fuels and for electricity used in transportation. Shared methods for measuring emissions and credits let firms operate at multi state scale and provide evidence that informs future federal rules.

Coalition of “Section 177” states

Under Section 177 of the Clean Air Act, states can adopt California vehicle emission standards after the Environmental Protection Agency grants California a waiver. These programs include Advanced Clean Cars II for light duty zero emission vehicle sales and Advanced Clean Trucks for medium and heavy duty sales. When many states adopt these programs without change, their combined market share creates a national trajectory for zero emission vehicles in practice. Automakers and fleet operators then plan and invest on a national basis, which supports stronger Environmental Protection Agency standards later.

Why subnational action matters

It accelerates scale and speed because local, regional, and state programs can move before federal rules arrive. It lowers costs because public procurement, utility programs, and regional power markets create steady demand that pulls down prices for vehicles, chargers, heat pumps, storage, and clean power. It protects public health because air and transportation actions reduce NOx and fine particles where burdens are highest. It builds the technical and legal record that federal agencies need to issue durable nationwide standards. It strengthens economic competitiveness because coordinated subnational demand anchors domestic supply chains and skilled jobs. It also preserves momentum if federal policy pauses because state and local action keeps progress moving.

Local codes and BPS spark demand for clean buildings and fleets. Intrastate regional agencies focus that demand at freight hubs and along major corridors and translate it into real projects and service. State laws and PUC decisions scale clean power and building electrification while deploying IIJA and IRA funds. Interstate agencies unlock transmission, fair market access, and consistent carbon and fuel signals, which lowers costs across many states. Multi state coalitions and Section 177 adoption align methods and timelines so companies face consistent expectations across very large markets. Federal agencies can then lift and lock in these proven approaches through nationwide standards.

Subnational action is the engine that turns goals into markets, turns markets into standards, and turns standards into durable national progress.

Categories
Uncategorized

Primer on local government

Local communities are served by one or more local government agency (e.g., municipality, county government, and school, transit, and water districts). 

Local governments:

  • Deliver essential day-to-day services like emergency response, transportation, water, wastewater, waste management, and the provision of shared public places like parks, recreation centers, and libraries;
  • Plan and solve common problems around public safety, land use and zoning, permitting, budgeting, and the levying of taxes and fees;
  • Coordinate with neighboring jurisdictions and other outside partners;
  • Represent residents to higher levels of government and other entities: and
  • Provide an elected government with democratic processes that is typically closest to people

Local governments have some important differences compared to their federal and state counterparts. For one, they possess specialized authority to manage land use, transportation, buildings, public health, and emergency preparation and response, all key building blocks for climate solutions and quality of life in communities.

They also operate differently. What they are able to accomplish, and what they are not, is constrained by personnel bandwidth and management practices to a higher degree than higher jurisdictions. 

By extension, mic governments can be inhibited by processes of change and disruption, which tend to require involvement from legal, public engagement, and coordination across multiple departments.

Categories
Uncategorized

High-reward climate action: Safe streets

When people think of climate solutions, the mind often goes to things that need be installed: Solar and wind, battery storage, building retrofits, tree planting, and carbon removal. All are essential.

Yet a powerful, fast-payback lever hides in plain sight: designing streets for safety. Safer streets cut emissions directly and acts as a force multiplier for transportation decarbonization—one of the largest sources of climate pollution in many countries and an area where progress must accelerate.

Safe streets unlock “avoid and shift,” the fastest path to lower transportation emissions. The biggest gains come first from avoiding car trips through better land use, then from shifting remaining trips to walking, cycling, and transit.

Avoiding and shifting multiply what is possible with vehicle improvements by reducing the number and length of car trips before technology even enters the picture.

Safety is the skeleton key that lets avoid and shift scale in transportation—and it delivers unusually strong returns on investment. Compared with large capital projects, quick-build safety upgrades, protected bike networks, safer crossings, and bus priority can be delivered rapidly, save lives immediately, reduce vehicle miles traveled, and unlock further climate benefits. This is not marginal action; it is a force multiplier that climate advocates should prioritize.

Bicycling and walking

Research shows that most people’s relationship with a bicycle for transportation is that they are “interested” but concerned that the risks and stress are too much. They’re open to bicyling and walking if it feels safe and convenient, but not if it feels exposed or confusing.

Perceived safety governs behavior. That means physical protection from fast traffic, lower speeds where people move, frequent and visible crossings, lighting, and predictable intersections. Where cities reduce vehicle speeds and add protected bike lanes and continuous sidewalks, injuries fall and the share of trips by foot and bike rises. As more people use these facilities, drivers expect them and everyone gets safer. This is how shift happens at scale.

Public transit

Safe streets enable transit in turn. Every rider is a pedestrian for part of the trip. If it is hard to cross to a stop, if the stop lacks lighting or a curb, or if the last block home has no sidewalk, the experience is unacceptable. Safer crossings, traffic calming on transit corridors, and priority for buses at signals make the whole trip safe and trustworthy, which builds ridership and reduces crashes at the same time.

Transit also creates a feedback loop: Per passenger mile, the mode is safer than driving for everyone. Vehicles are larger and driven by trained professionals, and each bus or train replaces many cars, which reduces conflicts on the street. Good transit also gives people who should not drive a better option. Teens, older adults, people with certain medical conditions, and anyone who is tired have a safe alternative when service is frequent and reliable.

Transit upgrades are also high-ROI: modest signal changes, dedicated lanes, and safer stop access can deliver large travel-time and safety gains at a fraction of the cost of roadway widening.

Efficient vehicles, electric and otherwise

Safe streets also enable smaller, lighter vehicles—and help end the arms race toward bigger and heavier ones. Lower-speed networks, traffic calming, and separated facilities make compact cars, neighborhood electric vehicles (NEVs), and microcars practical for everyday travel. In many jurisdictions, NEVs can operate on lower-speed streets; when those streets are designed for safety, households can right-size to vehicles that consume far less energy and pose less risk to others.

This reverses the trend toward ever-larger vehicles driven by high-speed, high-volume roads and crash incompatibility. Designing for safe, lower speeds makes small, efficient vehicles viable, which further reduces emissions, space needs, and crash severity.

And it matters even for electric: When considering the overall vehicle fleet, a proportion that is meaingfully smaller and lighter corresponds to a meaingfully lower GHG footprint. It also means fewer materials and resources for electrification are needed per vehicle, which has an additional effect in aggregate. Finally, a more circumspect average vehicle profile is safer for those traveling outside vehicle cabins, like walkers and cyclists, which in large numbers induces more of the lightest travel of all.

Compact, human-centered neighborhoods

Compact, mixed-use neighborhoods reduce daily travel needs so people can reach most essentials with short trips. A connected street network, homes near jobs and schools, and local services within a short walk or ride lower vehicle miles traveled across the entire community.

That cuts emissions and makes streets safer, because shorter trips on calmer streets mean fewer high-speed impacts. Children can reach a park without crossing a five-lane road. An older neighbor can get to a cafe without a long drive. People using mobility aids can count on accessible paths. Safety becomes part of daily life rather than a personal burden.

The wider built environment

Crucially, the same choices that make streets safer also produce a more resource‑efficient, resilient built environment. Designing for compact, walkable places concentrates activity where efficient, electrified buildings and infrastructure perform best.

Shorter distances and attached or smaller homes reduce heating and cooling loads, making heat pumps and building electrification more cost‑effective.

Mixed-use, human‑scaled districts support district energy and shared infrastructure, lower peak electricity demand, and improve the economics of rooftop solar, storage, and demand flexibility.

Denser, walkable street grids cut materials use per capita, reduce stormwater runoff with less paved area per person, and shorten utility extensions—saving public money while boosting resilience to heat, outages, and extreme weather.

In other words, safe streets do double duty: they accelerate transportation decarbonization and strengthen the broader clean‑energy transition across buildings and grids.

In sum, improved vehicles and fuels are necessary but not sufficient. Heavier vehicles can increase the harm in crashes and crowd out the space needed for people outside cars. When streets feel safe, households can right-size travel: walk for a half mile, use a bike or e‑bike for a few miles, take a bus or train for longer trips, and use a car when it is the best tool for the job. This pattern cuts emissions faster and reduces risk right away. It also reduces the scale of infrastructure and energy systems needed for full decarbonization, improving the return on every dollar invested in electrification and clean power.

The benefits of this pathway are wide and personal. Health improves when more people can safely walk or bike for short trips. Cleaner air reduces asthma and heart disease. Most important, fewer families experience the grief and lifelong injury that follow serious crashes.

Freedom expands as more people can travel without a car. A 12‑year‑old can bike to a friend’s house. An 82‑year‑old can cross to a pharmacy. A parent can let a child walk to school without fear. Households save money when they can own fewer and smaller vehicles.

Towns and cities save money when safer street designs reduce crashes and when compact, multimodal infrastructure costs less to build and maintain than endless lanes that must be widened again and again. For climate advocates focused on impact per dollar and speed of deployment, safe streets deliver exceptional returns now and set the stage for every other climate solution to work better.

Unlock the multipliers of avoid and shift with safety. Lower speeds where people live and shop. Build connected, protected networks for walking and cycling. Fix crossings to make them frequent and visible. Invest in frequent, reliable transit and safe access to every stop. Plan for mixed uses and connected streets. These steps cut emissions, save lives, expand freedom, strengthen the clean‑energy transition in buildings and grids, and save money. Safe streets are high‑ROI climate action—and a catalyst for more.

References

Dill, J., and McNeil, N. (2013). Four Types of Cyclists? Examination of a Typology for Better Understanding of Bicycling Behavior. Transportation Research Record. https://doi.org/10.3141/2387-01

Teschke, K., et al. (2012). Route Infrastructure and the Risk of Injuries to Bicyclists. American Journal of Public Health. https://doi.org/10.2105/AJPH.2012.300762

Litman, T. (2021). A New Transit Safety Narrative. Victoria Transport Policy Institute. https://www.vtpi.org/safer.pdf

Ewing, R., and Cervero, R. (2010). Travel and the Built Environment. Journal of the American Planning Association. https://doi.org/10.1080/01944361003766766

FHWA (2021). Safe System Approach. Federal Highway Administration. https://highways.dot.gov/safety/zero-deaths/safe-system-approach

IPCC (2022). Climate Change 2022 Mitigation of Climate Change. Working Group III contribution. https://www.ipcc.ch/report/ar6/wg3/

PNAS (2025). Global health and climate benefits from walking and cycling. Proceedings of the National Academy of Sciences. https://www.pnas.org/doi/10.1073/pnas.2422334122

UCLA Institute of Transportation Studies (2025). Active travel study identifies pathways for walking and cycling friendly cities. UCLA ITS. https://www.its.ucla.edu/2025/06/09/active-travel-study-identifies-pathways-for-walking-cycling-friendly-cities/

Categories
Uncategorized

Efficiency improvements through electric vehicles: You don’t know the half of it

Electrifying transportation seems like magic because the core machine is so much better at turning energy into motion.

A typical electric drivetrain is about three times as efficient as a gasoline one, and it runs on a fuel that can steadily move toward being 100% renewable and carbon-free.

EVs bring other benefits too, like quiet streets and low maintenance, but the headline is simple. Its superpower is efficiency. We are talking about roughly 0.27 kWh per mile for a mid-size EV, equivalent to about 125 MPG.

That gap alone is enough to deeply cut emissions as the grid cleans up. Yet there is another side to efficiency that most people miss.

The way most of us travel day to day is overbuilt for the job. One person, often alone, moving at low average speeds through city streets in a 3,000 to 5,000+ lb vehicle.

Most of the energy goes to pushing a heavy machine and a lot of air, not to moving a human body. On a typical urban trip, about 95% of the energy moves the vehicle, and only about 5% moves the person.

That is not a moral judgment. It is physics.

When you repeatedly accelerate two tons in stop-and-go traffic, you spend energy on mass. When you cruise with a large frontal area, you spend energy on drag. Either way, the human is the smallest part of the payload.

The battery-electric revolution opens the door to right-sized electric mobility that flips this ratio. Electric motors scale beautifully. They are compact, efficient, and happy at many sizes.

That is why we now have an entire family of vehicles that can deliver a full trip at a fraction of the energy. Think e-scooters, e-bikes and cargo bikes, mopeds, compact city EVs, and neighborhood electric vehicles. The savings are not subtle.

A typical e-bike uses about 10 to 20 Wh per mile. At the U.S. average residential electricity price, that is well under one cent per mile. A small neighborhood EV might use 80 to 150 Wh per mile, still many times less than a full-size car.

Compare that with a gasoline sedan at around 1,100 Wh per mile worth of fuel energy, or even a mid-size EV at about 250 to 300 Wh per mile, and the order-of-magnitude difference becomes clear.

Right-sizing brings other gains. Smaller electric vehicles need smaller batteries, which lowers cost and materials demand. They can charge from an ordinary outlet overnight. Parking gets easier. Streets get calmer. Air gets cleaner where people live.

These are resilience benefits as well. A household with a mix of light electric options can keep moving even during fuel disruptions, and a car with a modest battery can backstop outages at home with vehicle-to-load gear. Cities that shift short trips to light electric modes need less space and less money to move more people.

None of this argues against the mainstream EV. For many trips, a conventional car is the right tool, and replacing a gasoline car with an electric one cuts energy use by a factor of three or four before you account for the grid’s ongoing shift to renewables. It is simply that our efficiency story is incomplete if it stops at the car-for-car swap. The lowest-cost, lowest-carbon, and most space-efficient miles will often be ridden, not driven.

The good news is we are already living in this future. Most urban trips are short enough for light electric mobility. In the United States, roughly half of all trips are under three miles. That is e-bike territory for many people and many days, with weather gear and cargo options making it practical for more. Cities that add safe networks for small vehicles see rapid uptake, because the product is compelling. It is fun, fast enough, cheap to run, and simple to maintain.

If you want a simple mental model, use this. Electrification gives you a big step up in efficiency at any vehicle size. Downsizing gives you another. Stack them and you get both deep decarbonization and better daily life. We can triple drivetrain efficiency by moving from internal combustion to electric. We can multiply total-system efficiency again by choosing the smallest electric that does the job. The result is cleaner air, lower costs, quieter streets, and far less energy burned to move the same person from A to B.

So by all means celebrate the conventional electric car. It is a workhorse and a crucial climate tool. Then look at the rest of the electric toolbox and pick the right size for the job. The fastest way to win on energy and money is to electrify, and then right-size.

Categories
Uncategorized

Let’s create *more*

A big untapped source of potential climate action is public-oriented infrastructure and other initiatives that improve well-being and make life better.

And one of the ways public-mission professionals can achieve greater impact is to use their capabilities to drive win-win, concrete results for the climate movement.

For changemakers all around, there are incredible opportunities to focus on the things that advance crucial climate action and make life better together.

Moreworks is here to help explore, lead, and assist in that endeavor.

Watch here to see knowledge resources for changemakers to unfold.

Inquiries about working other are most welcome at the contact page.